首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In many longitudinal studies multiple characteristics of each individual, along with time to occurrence of an event of interest, are often collected. In such data set, some of the correlated characteristics may be discrete and some of them may be continuous. In this paper, a joint model for analysing multivariate longitudinal data comprising mixed continuous and ordinal responses and a time to event variable is proposed. We model the association structure between longitudinal mixed data and time to event data using a multivariate zero-mean Gaussian process. For modeling discrete ordinal data we assume a continuous latent variable follows the logistic distribution and for continuous data a Gaussian mixed effects model is used. For the event time variable, an accelerated failure time model is considered under different distributional assumptions. For parameter estimation, a Bayesian approach using Markov Chain Monte Carlo is adopted. The performance of the proposed methods is illustrated using some simulation studies. A real data set is also analyzed, where different model structures are used. Model comparison is performed using a variety of statistical criteria.  相似文献   

2.
In this paper, a joint model for analyzing multivariate mixed ordinal and continuous responses, where continuous outcomes may be skew, is presented. For modeling the discrete ordinal responses, a continuous latent variable approach is considered and for describing continuous responses, a skew-normal mixed effects model is used. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation. Some simulation studies are performed for illustration of the proposed approach. The results of the simulation studies show that the use of the separate models or the normal distributional assumption for shared random effects and within-subject errors of continuous and ordinal variables, instead of the joint modeling under a skew-normal distribution, leads to biased parameter estimates. The approach is used for analyzing a part of the British Household Panel Survey (BHPS) data set. Annual income and life satisfaction are considered as the continuous and the ordinal longitudinal responses, respectively. The annual income variable is severely skewed, therefore, the use of the normality assumption for the continuous response does not yield acceptable results. The results of data analysis show that gender, marital status, educational levels and the amount of money spent on leisure have a significant effect on annual income, while marital status has the highest impact on life satisfaction.  相似文献   

3.
In this paper, we develop a conditional model for analyzing mixed bivariate continuous and ordinal longitudinal responses. We propose a quantile regression model with random effects for analyzing continuous responses. For this purpose, an Asymmetric Laplace Distribution (ALD) is allocated for continuous response given random effects. For modeling ordinal responses, a cumulative logit model is used, via specifying a latent variable model, with considering other random effects. Therefore, the intra-association between continuous and ordinal responses is taken into account using their own exclusive random effects. But, the inter-association between two mixed responses is taken into account by adding a continuous response term in the ordinal model. We use a Bayesian approach via Markov chain Monte Carlo method for analyzing the proposed conditional model and to estimate unknown parameters, a Gibbs sampler algorithm is used. Moreover, we illustrate an application of the proposed model using a part of the British Household Panel Survey data set. The results of data analysis show that gender, age, marital status, educational level and the amount of money spent on leisure have significant effects on annual income. Also, the associated parameter is significant in using the best fitting proposed conditional model, thus it should be employed rather than analyzing separate models.  相似文献   

4.
We implement a joint model for mixed multivariate longitudinal measurements, applied to the prediction of time until lung transplant or death in idiopathic pulmonary fibrosis. Specifically, we formulate a unified Bayesian joint model for the mixed longitudinal responses and time-to-event outcomes. For the longitudinal model of continuous and binary responses, we investigate multivariate generalized linear mixed models using shared random effects. Longitudinal and time-to-event data are assumed to be independent conditional on available covariates and shared parameters. A Markov chain Monte Carlo algorithm, implemented in OpenBUGS, is used for parameter estimation. To illustrate practical considerations in choosing a final model, we fit 37 different candidate models using all possible combinations of random effects and employ a deviance information criterion to select a best-fitting model. We demonstrate the prediction of future event probabilities within a fixed time interval for patients utilizing baseline data, post-baseline longitudinal responses, and the time-to-event outcome. The performance of our joint model is also evaluated in simulation studies.  相似文献   

5.
Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery.  相似文献   

6.
We propose a joint model based on a latent variable for analyzing mixed power series and ordinal longitudinal data with and without missing values. A bivariate probit regression model is used for the missing mechanisms. Random effects are used to take into account the correlation between longitudinal responses. A full likelihood-based approach is used to yield maximum-likelihood estimates of the model parameters. Our model is applied to a medical data set, obtained from an observational study on women where the correlated responses are the ordinal response of osteoporosis of the spine and the power series response of the number of joint damages. Sensitivity analysis is also performed to study the influence of small perturbations of the parameters of the missing mechanisms and overdispersion of the model on likelihood displacement.  相似文献   

7.
Regression models with random effects are proposed for joint analysis of negative binomial and ordinal longitudinal data with nonignorable missing values under fully parametric framework. The presented model simultaneously considers a multivariate probit regression model for the missing mechanisms, which provides the ability of examining the missing data assumptions and a multivariate mixed model for the responses. Random effects are used to take into account the correlation between longitudinal responses of the same individual. A full likelihood-based approach that allows yielding maximum likelihood estimates of the model parameters is used. The model is applied to a medical data, obtained from an observational study on women, where the correlated responses are the ordinal response of osteoporosis of the spine and negative binomial response is the number of joint damage. A sensitivity of the results to the assumptions is also investigated. The effect of some covariates on all responses are investigated simultaneously.  相似文献   

8.
ABSTRACT

A general Bayesian random effects model for analyzing longitudinal mixed correlated continuous and negative binomial responses with and without missing data is presented. This Bayesian model, given some random effects, uses a normal distribution for the continuous response and a negative binomial distribution for the count response. A Markov Chain Monte Carlo sampling algorithm is described for estimating the posterior distribution of the parameters. This Bayesian model is illustrated by a simulation study. For sensitivity analysis to investigate the change of parameter estimates with respect to the perturbation from missing at random to not missing at random assumption, the use of posterior curvature is proposed. The model is applied to a medical data, obtained from an observational study on women, where the correlated responses are the negative binomial response of joint damage and continuous response of body mass index. The simultaneous effects of some covariates on both responses are also investigated.  相似文献   

9.
The shared-parameter model and its so-called hierarchical or random-effects extension are widely used joint modeling approaches for a combination of longitudinal continuous, binary, count, missing, and survival outcomes that naturally occurs in many clinical and other studies. A random effect is introduced and shared or allowed to differ between two or more repeated measures or longitudinal outcomes, thereby acting as a vehicle to capture association between the outcomes in these joint models. It is generally known that parameter estimates in a linear mixed model (LMM) for continuous repeated measures or longitudinal outcomes allow for a marginal interpretation, even though a hierarchical formulation is employed. This is not the case for the generalized linear mixed model (GLMM), that is, for non-Gaussian outcomes. The aforementioned joint models formulated for continuous and binary or two longitudinal binomial outcomes, using the LMM and GLMM, will naturally have marginal interpretation for parameters associated with the continuous outcome but a subject-specific interpretation for the fixed effects parameters relating covariates to binary outcomes. To derive marginally meaningful parameters for the binary models in a joint model, we adopt the marginal multilevel model (MMM) due to Heagerty [13] and Heagerty and Zeger [14] and formulate a joint MMM for two longitudinal responses. This enables to (1) capture association between the two responses and (2) obtain parameter estimates that have a population-averaged interpretation for both outcomes. The model is applied to two sets of data. The results are compared with those obtained from the existing approaches such as generalized estimating equations, GLMM, and the model of Heagerty [13]. Estimates were found to be very close to those from single analysis per outcome but the joint model yields higher precision and allows for quantifying the association between outcomes. Parameters were estimated using maximum likelihood. The model is easy to fit using available tools such as the SAS NLMIXED procedure.  相似文献   

10.
We propose a general latent variable model for multivariate ordinal categorical variables, in which both the responses and the covariates are ordinal, to assess the effect of the covariates on the responses and to model the covariance structure of the response variables. A?fully Bayesian approach is employed to analyze the model. The Gibbs sampler is used to simulate the joint posterior distribution of the latent variables and the parameters, and the parameter expansion and reparameterization techniques are used to speed up the convergence procedure. The proposed model and method are demonstrated by simulation studies and a real data example.  相似文献   

11.
This article presents a Bayesian latent variable model used to analyze ordinal response survey data by taking into account the characteristics of respondents. The ordinal response data are viewed as multivariate responses arising from continuous latent variables with known cut-points. Each respondent is characterized by two parameters that have a Dirichlet process as their joint prior distribution. The proposed mechanism adjusts for classes of personalities. The model is applied to student survey data in course evaluations. Goodness-of-fit (GoF) procedures are developed for assessing the validity of the model. The proposed GoF procedures are simple, intuitive, and do not seem to be a part of current Bayesian practice.  相似文献   

12.
Using a multivariate latent variable approach, this article proposes some new general models to analyze the correlated bounded continuous and categorical (nominal or/and ordinal) responses with and without non-ignorable missing values. First, we discuss regression methods for jointly analyzing continuous, nominal, and ordinal responses that we motivated by analyzing data from studies of toxicity development. Second, using the beta and Dirichlet distributions, we extend the models so that some bounded continuous responses are replaced for continuous responses. The joint distribution of the bounded continuous, nominal and ordinal variables is decomposed into a marginal multinomial distribution for the nominal variable and a conditional multivariate joint distribution for the bounded continuous and ordinal variables given the nominal variable. We estimate the regression parameters under the new general location models using the maximum-likelihood method. Sensitivity analysis is also performed to study the influence of small perturbations of the parameters of the missing mechanisms of the model on the maximal normal curvature. The proposed models are applied to two data sets: BMI, Steatosis and Osteoporosis data and Tehran household expenditure budgets.  相似文献   

13.
In some clinical trials and epidemiologic studies, investigators are interested in knowing whether the variability of a biomarker is independently predictive of clinical outcomes. This question is often addressed via a naïve approach where a sample-based estimate (e.g., standard deviation) is calculated as a surrogate for the “true” variability and then used in regression models as a covariate assumed to be free of measurement error. However, it is well known that the measurement error in covariates causes underestimation of the true association. The issue of underestimation can be substantial when the precision is low because of limited number of measures per subject. The joint analysis of survival data and longitudinal data enables one to account for the measurement error in longitudinal data and has received substantial attention in recent years. In this paper we propose a joint model to assess the predictive effect of biomarker variability. The joint model consists of two linked sub-models, a linear mixed model with patient-specific variance for longitudinal data and a full parametric Weibull distribution for survival data, and the association between two models is induced by a latent Gaussian process. Parameters in the joint model are estimated under Bayesian framework and implemented using Markov chain Monte Carlo (MCMC) methods with WinBUGS software. The method is illustrated in the Ocular Hypertension Treatment Study to assess whether the variability of intraocular pressure is an independent risk of primary open-angle glaucoma. The performance of the method is also assessed by simulation studies.  相似文献   

14.
This article studies a general joint model for longitudinal measurements and competing risks survival data. The model consists of a linear mixed effects sub-model for the longitudinal outcome, a proportional cause-specific hazards frailty sub-model for the competing risks survival data, and a regression sub-model for the variance–covariance matrix of the multivariate latent random effects based on a modified Cholesky decomposition. The model provides a useful approach to adjust for non-ignorable missing data due to dropout for the longitudinal outcome, enables analysis of the survival outcome with informative censoring and intermittently measured time-dependent covariates, as well as joint analysis of the longitudinal and survival outcomes. Unlike previously studied joint models, our model allows for heterogeneous random covariance matrices. It also offers a framework to assess the homogeneous covariance assumption of existing joint models. A Bayesian MCMC procedure is developed for parameter estimation and inference. Its performances and frequentist properties are investigated using simulations. A real data example is used to illustrate the usefulness of the approach.  相似文献   

15.
A random effects model for analyzing mixed longitudinal count and ordinal data is presented where the count response is inflated in two points (k and l) and an (k,l)-Inflated Power series distribution is used as its distribution. A full likelihood-based approach is used to obtain maximum likelihood estimates of parameters of the model. For data with non-ignorable missing values models with probit model for missing mechanism are used.The dependence between longitudinal sequences of responses and inflation parameters are investigated using a random effects approach. Also, to investigate the correlation between mixed ordinal and count responses of each individuals at each time, a shared random effect is used. In order to assess the performance of the model, a simulation study is performed for a case that the count response has (k,l)-Inflated Binomial distribution. Performance comparisons of count-ordinal random effect model, Zero-Inflated ordinal random effects model and (k,l)-Inflated ordinal random effects model are also given. The model is applied to a real social data set from the first two waves of the national longitudinal study of adolescent to adult health (Add Health study). In this data set, the joint responses are the number of days in a month that each individual smoked as the count response and the general health condition of each individual as the ordinal response. For the count response there is incidence of excess values of 0 and 30.  相似文献   

16.
Typical joint modeling of longitudinal measurements and time to event data assumes that two models share a common set of random effects with a normal distribution assumption. But, sometimes the underlying population that the sample is extracted from is a heterogeneous population and detecting homogeneous subsamples of it is an important scientific question. In this paper, a finite mixture of normal distributions for the shared random effects is proposed for considering the heterogeneity in the population. For detecting whether the unobserved heterogeneity exits or not, we use a simple graphical exploratory diagnostic tool proposed by Verbeke and Molenberghs [34] to assess whether the traditional normality assumption for the random effects in the mixed model is adequate. In the joint modeling setting, in the case of evidence against normality (homogeneity), a finite mixture of normals is used for the shared random-effects distribution. A Bayesian MCMC procedure is developed for parameter estimation and inference. The methodology is illustrated using some simulation studies. Also, the proposed approach is used for analyzing a real HIV data set, using the heterogeneous joint model for this data set, the individuals are classified into two groups: a group with high risk and a group with moderate risk.  相似文献   

17.
In this paper, we propose the use of Bayesian quantile regression for the analysis of proportion data. We also consider the case when the data present a zero-or-one inflation using a two-part model approach. For the latter scheme, we assume that the response variable is generated by a mixed discrete–continuous distribution with a point mass at zero or one. Quantile regression is then used to explain the conditional distribution of the continuous part between zero and one, while the mixture probability is also modelled as a function of the covariates. We check the performance of these models with two simulation studies. We illustrate the method with data about the proportion of households with access to electricity in Brazil.  相似文献   

18.
In a medical study, patients have various stages of illness. After treatment the patient will be cured or the stage of illness will change. Since there are suitable evidences of a susceptible population by several levels, the authors combine a Self-Modeling ordinal model for the probability of occurrence of an event with a Cox regression for the time of occurrence of an event. We proposed the use of self-modeling ordinal longitudinal where the conditional cumulative probabilities for a category of an outcome have a relation with shape-invariant model. A simulation study is carried out for justification of the methodology. A schizophrenia illness data are analyzed based on our model to see whether the treatment affects the illness.  相似文献   

19.
Abstract

Augmented mixed beta regression models are suitable choices for modeling continuous response variables on the closed interval [0, 1]. The random eeceeects in these models are typically assumed to be normally distributed, but this assumption is frequently violated in some applied studies. In this paper, an augmented mixed beta regression model with skew-normal independent distribution for random effects are used. Next, we adopt a Bayesian approach for parameter estimation using the MCMC algorithm. The methods are then evaluated using some intensive simulation studies. Finally, the proposed models have applied to analyze a dataset from an Iranian Labor Force Survey.  相似文献   

20.
In this paper, we study the indentifiability of a latent random effect model for the mixed correlated continuous and ordinal longitudinal responses. We derive conditions for the identifiability of the covariance parameters of the responses. Also, we proposed sensitivity analysis to investigate the perturbation from the non-identifiability of the covariance parameters, it is shown how one can use some elements of covariance structure. These elements associate conditions for identifiability of the covariance parameters of the responses. Influence of small perturbation of these elements on maximal normal curvature is also studied. The model is illustrated using medical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号