首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Longitudinal and time-to-event data are often observed together. Finite mixture models are currently used to analyze nonlinear heterogeneous longitudinal data, which, by releasing the homogeneity restriction of nonlinear mixed-effects (NLME) models, can cluster individuals into one of the pre-specified classes with class membership probabilities. This clustering may have clinical significance, and be associated with clinically important time-to-event data. This article develops a joint modeling approach to a finite mixture of NLME models for longitudinal data and proportional hazard Cox model for time-to-event data, linked by individual latent class indicators, under a Bayesian framework. The proposed joint models and method are applied to a real AIDS clinical trial data set, followed by simulation studies to assess the performance of the proposed joint model and a naive two-step model, in which finite mixture model and Cox model are fitted separately.  相似文献   

3.
Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery.  相似文献   

4.
This article presents a Bayesian latent variable model used to analyze ordinal response survey data by taking into account the characteristics of respondents. The ordinal response data are viewed as multivariate responses arising from continuous latent variables with known cut-points. Each respondent is characterized by two parameters that have a Dirichlet process as their joint prior distribution. The proposed mechanism adjusts for classes of personalities. The model is applied to student survey data in course evaluations. Goodness-of-fit (GoF) procedures are developed for assessing the validity of the model. The proposed GoF procedures are simple, intuitive, and do not seem to be a part of current Bayesian practice.  相似文献   

5.
The recurrent-event setting, where the subjects experience multiple occurrences of the event of interest, are encountered in many biomedical applications. In analyzing recurrent event data, non informative censoring is often assumed for the implementation of statistical methods. However, when a terminating event such as death serves as part of the censoring mechanism, validity of the censoring assumption may be violated because recurrence can be a powerful risk factor for death. We consider joint modeling of recurrent event process and terminating event under a Bayesian framework in which a shared frailty is used to model the association between the intensity of the recurrent event process and the hazard of the terminating event. Our proposed model is implemented on data from a well-known cancer study.  相似文献   

6.
Jointly modeling longitudinal and survival data has been an active research area. Most researches focus on improving the estimating efficiency but ignore many data features frequently encountered in practice. In the current study, we develop the joint models that concurrently accounting for longitudinal and survival data with multiple features. Specifically, the proposed model handles skewness, missingness and measurement errors in covariates which are typically observed in the collection of longitudinal survival data from many studies. We employ a Bayesian inferential method to make inference on the proposed model. We applied the proposed model to an real data study. A few alternative models under different conditions are compared. We conduct extensive simulations in order to evaluate how the method works.  相似文献   

7.
In disease mapping, health outcomes measured at the same spatial locations may be correlated, so one can consider joint modeling the multivariate health outcomes accounting for their dependence. The general approaches often used for joint modeling include shared component models and multivariate models. An alternative way to model the association between two health outcomes, when one outcome can naturally serve as a covariate of the other, is to use ecological regression model. For example, in our application, preterm birth (PTB) can be treated as a predictor for low birth weight (LBW) and vice versa. Therefore, we proposed to blend the ideas from joint modeling and ecological regression methods to jointly model the relative risks for LBW and PTBs over the health districts in Saskatchewan, Canada, in 2000–2010. This approach is helpful when proxy of areal-level contextual factors can be derived based on the outcomes themselves when direct information on risk factors are not readily available. Our results indicate that the proposed approach improves the model fit when compared with the conventional joint modeling methods. Further, we showed that when no strong spatial autocorrelation is present, joint outcome modeling using only independent error terms can still provide a better model fit when compared with the separate modeling.  相似文献   

8.
Joint modeling of recurrent and terminal events has attracted considerable interest and extensive investigations by many authors. The assumption of low-dimensional covariates has been usually applied in the existing studies, which is however inapplicable in many practical situations. In this paper, we consider a partial sufficient dimension reduction approach for a joint model with high-dimensional covariates. Some simulations as well as three real data applications are presented to confirm and assess the performance of the proposed model and approach.  相似文献   

9.
Recent changes in European family dynamics are often linked to common latent trends of economic and ideational change. Using Bayesian factor analysis, we extract three latent variables from eight socio-demographic indicators related to family formation, dissolution, and gender system and collected on 19 European countries within four periods (1970, 1980, 1990, 1998). The flexibility of the Bayesian approach allows us to introduce an innovative temporal factor model, adding the temporal dimension to the traditional factorial analysis. The underlying structure of the Bayesian factor model proposed reflects our idea of an autoregressive pattern in the latent variables relative to adjacent time periods. The results we obtain are consistent with current interpretations in European demographic trends.  相似文献   

10.
Finite mixture models are currently used to analyze heterogeneous longitudinal data. By releasing the homogeneity restriction of nonlinear mixed-effects (NLME) models, finite mixture models not only can estimate model parameters but also cluster individuals into one of the pre-specified classes with class membership probabilities. This clustering may have clinical significance, which might be associated with a clinically important binary outcome. This article develops a joint modeling of a finite mixture of NLME models for longitudinal data in the presence of covariate measurement errors and a logistic regression for a binary outcome, linked by individual latent class indicators, under a Bayesian framework. Simulation studies are conducted to assess the performance of the proposed joint model and a naive two-step model, in which finite mixture model and logistic regression are fitted separately, followed by an application to a real data set from an AIDS clinical trial, in which the viral dynamics and dichotomized time to the first decline of CD4/CD8 ratio are analyzed jointly.  相似文献   

11.
The paper considers non-parametric maximum likelihood estimation of the failure time distribution for interval-censored data subject to misclassification. Such data can arise from two types of observation scheme; either where observations continue until the first positive test result or where tests continue regardless of the test results. In the former case, the misclassification probabilities must be known, whereas in the latter case, joint estimation of the event-time distribution and misclassification probabilities is possible. The regions for which the maximum likelihood estimate can only have support are derived. Algorithms for computing the maximum likelihood estimate are investigated and it is shown that algorithms appropriate for computing non-parametric mixing distributions perform better than an iterative convex minorant algorithm in terms of time to absolute convergence. A profile likelihood approach is proposed for joint estimation. The methods are illustrated on a data set relating to the onset of cardiac allograft vasculopathy in post-heart-transplantation patients.  相似文献   

12.
Typical joint modeling of longitudinal measurements and time to event data assumes that two models share a common set of random effects with a normal distribution assumption. But, sometimes the underlying population that the sample is extracted from is a heterogeneous population and detecting homogeneous subsamples of it is an important scientific question. In this paper, a finite mixture of normal distributions for the shared random effects is proposed for considering the heterogeneity in the population. For detecting whether the unobserved heterogeneity exits or not, we use a simple graphical exploratory diagnostic tool proposed by Verbeke and Molenberghs [34] to assess whether the traditional normality assumption for the random effects in the mixed model is adequate. In the joint modeling setting, in the case of evidence against normality (homogeneity), a finite mixture of normals is used for the shared random-effects distribution. A Bayesian MCMC procedure is developed for parameter estimation and inference. The methodology is illustrated using some simulation studies. Also, the proposed approach is used for analyzing a real HIV data set, using the heterogeneous joint model for this data set, the individuals are classified into two groups: a group with high risk and a group with moderate risk.  相似文献   

13.
Crossover designs are popular in early phases of clinical trials and in bioavailability and bioequivalence studies. Assessment of carryover effects, in addition to the treatment effects, is a critical issue in crossover trails. The observed data from a crossover trial can be incomplete because of potential dropouts. A joint model for analyzing incomplete data from crossover trials is proposed in this article; the model includes a measurement model and an outcome dependent informative model for the dropout process. The informative-dropout model is compared with the ignorable-dropout model as specific cases of the latter are nested subcases of the proposed joint model. Markov chain sampling methods are used for Bayesian analysis of this model. The joint model is used to analyze depression score data from a clinical trial in women with late luteal phase dysphoric disorder. Interestingly, carryover effect is found to have a strong effect in the informative dropout model, but it is less significant when dropout is considered ignorable.  相似文献   

14.
Many phase I drug combination designs have been proposed to find the maximum tolerated combination (MTC). Due to the two‐dimension nature of drug combination trials, these designs typically require complicated statistical modeling and estimation, which limit their use in practice. In this article, we propose an easy‐to‐implement Bayesian phase I combination design, called Bayesian adaptive linearization method (BALM), to simplify the dose finding for drug combination trials. BALM takes the dimension reduction approach. It selects a subset of combinations, through a procedure called linearization, to convert the two‐dimensional dose matrix into a string of combinations that are fully ordered in toxicity. As a result, existing single‐agent dose‐finding methods can be directly used to find the MTC. In case that the selected linear path does not contain the MTC, a dose‐insertion procedure is performed to add new doses whose expected toxicity rate is equal to the target toxicity rate. Our simulation studies show that the proposed BALM design performs better than competing, more complicated combination designs.  相似文献   

15.
Consider a J-component series system which is put on Accelerated Life Test (ALT) involving K stress variables. First, a general formulation of ALT is provided for log-location-scale family of distributions. A general stress translation function of location parameter of the component log-lifetime distribution is proposed which can accommodate standard ones like Arrhenius, power-rule, log-linear model, etc., as special cases. Later, the component lives are assumed to be independent Weibull random variables with a common shape parameter. A full Bayesian methodology is then developed by letting only the scale parameters of the Weibull component lives depend on the stress variables through the general stress translation function. Priors on all the parameters, namely the stress coefficients and the Weibull shape parameter, are assumed to be log-concave and independent of each other. This assumption is to facilitate Gibbs sampling from the joint posterior. The samples thus generated from the joint posterior is then used to obtain the Bayesian point and interval estimates of the system reliability at usage condition.  相似文献   

16.
The Box–Jenkins methodology for modeling and forecasting from univariate time series models has long been considered a standard to which other forecasting techniques have been compared. To a Bayesian statistician, however, the method lacks an important facet—a provision for modeling uncertainty about parameter estimates. We present a technique called sampling the future for including this feature in both the estimation and forecasting stages. Although it is relatively easy to use Bayesian methods to estimate the parameters in an autoregressive integrated moving average (ARIMA) model, there are severe difficulties in producing forecasts from such a model. The multiperiod predictive density does not have a convenient closed form, so approximations are needed. In this article, exact Bayesian forecasting is approximated by simulating the joint predictive distribution. First, parameter sets are randomly generated from the joint posterior distribution. These are then used to simulate future paths of the time series. This bundle of many possible realizations is used to project the future in several ways. Highest probability forecast regions are formed and portrayed with computer graphics. The predictive density's shape is explored. Finally, we discuss a method that allows the analyst to subjectively modify the posterior distribution on the parameters and produce alternate forecasts.  相似文献   

17.
In this paper, a joint model for analyzing multivariate mixed ordinal and continuous responses, where continuous outcomes may be skew, is presented. For modeling the discrete ordinal responses, a continuous latent variable approach is considered and for describing continuous responses, a skew-normal mixed effects model is used. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation. Some simulation studies are performed for illustration of the proposed approach. The results of the simulation studies show that the use of the separate models or the normal distributional assumption for shared random effects and within-subject errors of continuous and ordinal variables, instead of the joint modeling under a skew-normal distribution, leads to biased parameter estimates. The approach is used for analyzing a part of the British Household Panel Survey (BHPS) data set. Annual income and life satisfaction are considered as the continuous and the ordinal longitudinal responses, respectively. The annual income variable is severely skewed, therefore, the use of the normality assumption for the continuous response does not yield acceptable results. The results of data analysis show that gender, marital status, educational levels and the amount of money spent on leisure have a significant effect on annual income, while marital status has the highest impact on life satisfaction.  相似文献   

18.
We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMMs). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study to jointly model questionnaire-based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.  相似文献   

19.
In many longitudinal studies multiple characteristics of each individual, along with time to occurrence of an event of interest, are often collected. In such data set, some of the correlated characteristics may be discrete and some of them may be continuous. In this paper, a joint model for analysing multivariate longitudinal data comprising mixed continuous and ordinal responses and a time to event variable is proposed. We model the association structure between longitudinal mixed data and time to event data using a multivariate zero-mean Gaussian process. For modeling discrete ordinal data we assume a continuous latent variable follows the logistic distribution and for continuous data a Gaussian mixed effects model is used. For the event time variable, an accelerated failure time model is considered under different distributional assumptions. For parameter estimation, a Bayesian approach using Markov Chain Monte Carlo is adopted. The performance of the proposed methods is illustrated using some simulation studies. A real data set is also analyzed, where different model structures are used. Model comparison is performed using a variety of statistical criteria.  相似文献   

20.
The purpose of this paper is to develop a Bayesian analysis for the zero-inflated hyper-Poisson model. Markov chain Monte Carlo methods are used to develop a Bayesian procedure for the model and the Bayes estimators are compared by simulation with the maximum-likelihood estimators. Regression modeling and model selection are also discussed and case deletion influence diagnostics are developed for the joint posterior distribution based on the functional Bregman divergence, which includes ψ-divergence and several others, divergence measures, such as the Itakura–Saito, Kullback–Leibler, and χ2 divergence measures. Performance of our approach is illustrated in artificial, real apple cultivation experiment data, related to apple cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号