首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Weibull, log-logistic and log-normal distributions are extensively used to model time-to-event data. The Weibull family accommodates only monotone hazard rates, whereas the log-logistic and log-normal are widely used to model unimodal hazard functions. The increasing availability of lifetime data with a wide range of characteristics motivate us to develop more flexible models that accommodate both monotone and nonmonotone hazard functions. One such model is the exponentiated Weibull distribution which not only accommodates monotone hazard functions but also allows for unimodal and bathtub shape hazard rates. This distribution has demonstrated considerable potential in univariate analysis of time-to-event data. However, the primary focus of many studies is rather on understanding the relationship between the time to the occurrence of an event and one or more covariates. This leads to a consideration of regression models that can be formulated in different ways in survival analysis. One such strategy involves formulating models for the accelerated failure time family of distributions. The most commonly used distributions serving this purpose are the Weibull, log-logistic and log-normal distributions. In this study, we show that the exponentiated Weibull distribution is closed under the accelerated failure time family. We then formulate a regression model based on the exponentiated Weibull distribution, and develop large sample theory for statistical inference. We also describe a Bayesian approach for inference. Two comparative studies based on real and simulated data sets reveal that the exponentiated Weibull regression can be valuable in adequately describing different types of time-to-event data.  相似文献   

2.
In this article, we explore a new two-parameter family of distribution, which is derived by suitably replacing the exponential term in the Gompertz distribution with a hyperbolic sine term. The resulting new family of distribution is referred to as the Gompertz-sinh distribution, and it possesses a thicker and longer lower tail than the Gompertz family, which is often used to model highly negatively skewed data. Moreover, we introduce a useful generalization of this model by adding a second shape parameter to accommodate a variety of density shapes as well as nondecreasing hazard shapes. The flexibility and better fitness of the new family, as well as its generalization, is demonstrated by providing well-known examples that involve complete, group, and censored data.  相似文献   

3.
The exponentiated Weibull family, a Weibull extension obtained by adding a second shape parameter, consists of regular distributions with bathtub shaped, unimodal and a broad variety of monotone hazard rates. It can be used for modeling lifetime data from reliability, survival and population studies, various extreme value data, and for constructing isotones of the tests of the composite hypothesis of exponentiality. The structural analysis of the family in this paper includes study of its skewness and kurtosis properties, density shapes and tail character, and the associated extreme value and extreme spacings distributions. Its usefulness in modeling extreme value data is illustrated using the floods of the Floyd River at James, Iowa.  相似文献   

4.
Time‐to‐event data are common in clinical trials to evaluate survival benefit of a new drug, biological product, or device. The commonly used parametric models including exponential, Weibull, Gompertz, log‐logistic, log‐normal, are simply not flexible enough to capture complex survival curves observed in clinical and medical research studies. On the other hand, the nonparametric Kaplan Meier (KM) method is very flexible and successful on catching the various shapes in the survival curves but lacks ability in predicting the future events such as the time for certain number of events and the number of events at certain time and predicting the risk of events (eg, death) over time beyond the span of the available data from clinical trials. It is obvious that neither the nonparametric KM method nor the current parametric distributions can fulfill the needs in fitting survival curves with the useful characteristics for predicting. In this paper, a full parametric distribution constructed as a mixture of three components of Weibull distribution is explored and recommended to fit the survival data, which is as flexible as KM for the observed data but have the nice features beyond the trial time, such as predicting future events, survival probability, and hazard function.  相似文献   

5.
We introduce a three-parameter extension of the exponential distribution which contains as sub-models the exponential, logistic-exponential and Marshall-Olkin exponential distributions. The new model is very flexible and its associated density function can be decreasing or unimodal. Further, it can produce all of the four major shapes of the hazard rate, that is, increasing, decreasing, bathtub and upside-down bathtub. Given that closed-form expressions are available for the survival and hazard rate functions, the new distribution is quite tractable. It can be used to analyze various types of observations including censored data. Computable representations of the quantile function, ordinary and incomplete moments, generating function and probability density function of order statistics are obtained. The maximum likelihood method is utilized to estimate the model parameters. A simulation study is carried out to assess the performance of the maximum likelihood estimators. Two actual data sets are used to illustrate the applicability of the proposed model.  相似文献   

6.
ABSTRACT

In survival analysis, individuals may fail due to multiple causes of failure called competing risks setting. Parametric models such as Weibull model are not improper that ignore the assumption of multiple failure times. In this study, a novel extension of Weibull distribution is proposed which is improper and then can incorporate to the competing risks framework. This model includes the original Weibull model before a pre-specified time point and an exponential form for the tail of the time axis. A Bayesian approach is used for parameter estimation. A simulation study is performed to evaluate the proposed model. The conducted simulation study showed identifiability and appropriate convergence of the proposed model. The proposed model and the 3-parameter Gompertz model, another improper parametric distribution, are fitted to the acute lymphoblastic leukemia dataset.  相似文献   

7.
The beta modified Weibull distribution   总被引:2,自引:0,他引:2  
A five-parameter distribution so-called the beta modified Weibull distribution is defined and studied. The new distribution contains, as special submodels, several important distributions discussed in the literature, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among others. The new distribution can be used effectively in the analysis of survival data since it accommodates monotone, unimodal and bathtub-shaped hazard functions. We derive the moments and examine the order statistics and their moments. We propose the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set is used to illustrate the importance and flexibility of the new distribution.  相似文献   

8.
In this paper, we propose a new class of semi-parametric cure rate models. Specifically, we construct dynamic models for piecewise hazard functions over a finite partition of the time axis. Allowing the size of partition and the levels of baseline hazard to be random, our proposed models provide a great flexibility in controlling the degree of parametricity in the right tail of the survival distribution and the amount of correlations among the log-baseline hazard levels. Several properties of the proposed models are derived, and propriety of the implied posteriors with improper noninformative priors for regression coefficients based on the proposed models is established for the fixed partition of the time axis. In addition, an efficient reversible jump computational algorithm is developed for carrying out posterior computation. A real data set from a melanoma clinical trial is analyzed in detail to further demonstrate the proposed methodology.  相似文献   

9.
In survival analysis applications, the presence of failure rate functions with non monotone shapes is common. Therefore, models that can accommodate such different shapes are needed. In this article, we present a location regression model based on the complementary exponentiated exponential geometric distribution as an alternative to the usual bathtub, increasing, and decreasing failure rates in lifetime data. Assuming censored data, we consider the maximum likelihood inference for analysis, graphical verification for residuals, and test statistics for influential points.  相似文献   

10.
The Weibull distribution is composited with Pareto model to obtain a flexible, reliable long-tailed parametric distribution for modeling unimodal failure rate data. The hazard function of the composite family accommodates decreasing and unimodal failure rates, which are separated by the boundary line of the space of shape parameter, gamma, when it equals to a known constant. The least square and maximum likelihood parameter estimation techniques are discussed. The advantages of using the proposed family are demonstrated and compared by illustrating well-known examples: guinea pigs survival time data, head and neck cancer data, and nasopharynx cancer survival data.  相似文献   

11.
We introduce a new class of distributions called the Weibull Marshall–Olkin-G family. We obtain some of its mathematical properties. The special models of this family provide bathtub-shaped, decreasing-increasing, increasing-decreasing-increasing, decreasing-increasing-decreasing, monotone, unimodal and bimodal hazard functions. The maximum likelihood method is adopted for estimating the model parameters. We assess the performance of the maximum likelihood estimators by means of two simulation studies. We also propose a new family of linear regression models for censored and uncensored data. The flexibility and importance of the proposed models are illustrated by means of three real data sets.  相似文献   

12.
Cure rate models are survival models characterized by improper survivor distributions which occur when the cumulative distribution function, say F, of the survival times does not sum up to 1 (i.e. F(+∞)<1). The first objective of this paper is to provide a general approach to generate data from any improper distribution. An application to times to event data randomly drawn from improper distributions with proportional hazards is investigated using the semi-parametric proportional hazards model with cure obtained as a special case of the nonlinear transformation models in [Tsodikov, Semiparametric models: A generalized self-consistency approach, J. R. Stat. Soc. Ser. B 65 (2003), pp. 759–774]. The second objective of this paper is to show by simulations that the bias, the standard error and the mean square error of the maximum partial likelihood (PL) estimator of the hazard ratio as well as the statistical power based on the PL estimator strongly depend on the proportion of subjects in the whole population who will never experience the event of interest.  相似文献   

13.
Two-parameter Gompertz distribution has been introduced as a lifetime model for reliability inference recently. In this paper, the Gompertz distribution is proposed for the baseline lifetimes of components in a composite system. In this composite system, failure of a component induces increased load on the surviving components and thus increases component hazard rate via a power-trend process. Point estimates of the composite system parameters are obtained by the method of maximum likelihood. Interval estimates of the baseline survival function are obtained by using the maximum-likelihood estimator via a bootstrap percentile method. Two parametric bootstrap procedures are proposed to test whether the hazard rate function changes with the number of failed components. Intensive simulations are carried out to evaluate the performance of the proposed estimation procedure.  相似文献   

14.
In this paper we develop a regression model for survival data in the presence of long-term survivors based on the generalized Gompertz distribution introduced by El-Gohary et al. [The generalized Gompertz distribution. Appl Math Model. 2013;37:13–24] in a defective version. This model includes as special case the Gompertz cure rate model proposed by Gieser et al. [Modelling cure rates using the Gompertz model with covariate information. Stat Med. 1998;17:831–839]. Next, an expectation maximization algorithm is then developed for determining the maximum likelihood estimates (MLEs) of the parameters of the model. In addition, we discuss the construction of confidence intervals for the parameters using the asymptotic distributions of the MLEs and the parametric bootstrap method, and assess their performance through a Monte Carlo simulation study. Finally, the proposed methodology was applied to a database on uterine cervical cancer.  相似文献   

15.
Mudholkar and Srivastava [1993. Exponentiated Weibull family for analyzing bathtub failure data. IEEE Trans. Reliability 42, 299–302] introduced three-parameter exponentiated Weibull distribution. Two-parameter exponentiated exponential or generalized exponential distribution is a particular member of the exponentiated Weibull distribution. Generalized exponential distribution has a right skewed unimodal density function and monotone hazard function similar to the density functions and hazard functions of the gamma and Weibull distributions. It is observed that it can be used quite effectively to analyze lifetime data in place of gamma, Weibull and log-normal distributions. The genesis of this model, several properties, different estimation procedures and their properties, estimation of the stress-strength parameter, closeness of this distribution to some of the well-known distribution functions are discussed in this article.  相似文献   

16.
Models for monotone trends in hazard rates for grouped survival data in stratified populations are introduced, and simple closed form score statistics for testing the significance of these trends are presented. The test statistics for some of the models understudy are shown to be independent of the assumed form of the function which relates the hazard rates to the sets of monotone scores assigned to the time intervals. The procedure is applied to test monotone trends in the recovery rates of erythematous response among skin cancer patients and controls that have been irradiated with a ultraviolent challenge.  相似文献   

17.
In clinical trials with survival data, investigators may wish to re-estimate the sample size based on the observed effect size while the trial is ongoing. Besides the inflation of the type-I error rate due to sample size re-estimation, the method for calculating the sample size in an interim analysis should be carefully considered because the data in each stage are mutually dependent in trials with survival data. Although the interim hazard estimate is commonly used to re-estimate the sample size, the estimate can sometimes be considerably higher or lower than the hypothesized hazard by chance. We propose an interim hazard ratio estimate that can be used to re-estimate the sample size under those circumstances. The proposed method was demonstrated through a simulation study and an actual clinical trial as an example. The effect of the shape parameter for the Weibull survival distribution on the sample size re-estimation is presented.  相似文献   

18.
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.  相似文献   

19.
The hazard function plays an important role in cancer patient survival studies, as it quantifies the instantaneous risk of death of a patient at any given time. Often in cancer clinical trials, unimodal hazard functions are observed, and it is of interest to detect (estimate) the turning point (mode) of hazard function, as this may be an important measure in patient treatment strategies with cancer. Moreover, when patient cure is a possibility, estimating cure rates at different stages of cancer, in addition to their proportions, may provide a better summary of the effects of stages on survival rates. Therefore, the main objective of this paper is to consider the problem of estimating the mode of hazard function of patients at different stages of cervical cancer in the presence of long-term survivors. To this end, a mixture cure rate model is proposed using the log-logistic distribution. The model is conveniently parameterized through the mode of the hazard function, in which cancer stages can affect both the cured fraction and the mode. In addition, we discuss aspects of model inference through the maximum likelihood estimation method. A Monte Carlo simulation study assesses the coverage probability of asymptotic confidence intervals.  相似文献   

20.
The random censorship model (RCM) is commonly used in biomedical science for modeling life distributions. The popular non-parametric Kaplan–Meier estimator and some semiparametric models such as Cox proportional hazard models are extensively discussed in the literature. In this paper, we propose to fit the RCM with the assumption that the actual life distribution and the censoring distribution have a proportional odds relationship. The parametric model is defined using Marshall–Olkin's extended Weibull distribution. We utilize the maximum-likelihood procedure to estimate model parameters, the survival distribution, the mean residual life function, and the hazard rate as well. The proportional odds assumption is also justified by the newly proposed bootstrap Komogorov–Smirnov type goodness-of-fit test. A simulation study on the MLE of model parameters and the median survival time is carried out to assess the finite sample performance of the model. Finally, we implement the proposed model on two real-life data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号