首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Bayesian optimal designs have received increasing attention in recent years, especially in biomedical and clinical trials. Bayesian design procedures can utilize the available prior information of the unknown parameters so that a better design can be achieved. With this in mind, this article considers the Bayesian A- and D-optimal designs of the two- and three-parameter Gamma regression model. In this regard, we first obtain the Fisher information matrix of the proposed model and then calculate the Bayesian A- and D-optimal designs assuming various prior distributions such as normal, half-normal, gamma, and uniform distribution for the unknown parameters. All of the numerical calculations are handled in R software. The results of this article are useful in medical and industrial researches.  相似文献   

2.
In this paper, we develop a simple nonparametric test for testing the independence of time to failure and cause of failure in competing risks set up. We generalise the test to the situation where failure data is right censored. We obtain the asymptotic distribution of the test statistics for complete and censored data. The efficiency loss due to censoring is studied using Pitman efficiency. The performance of the proposed test is evaluated through simulations. Finally we illustrate our test procedure using three real data sets.  相似文献   

3.
Competing risks are common in clinical cancer research, as patients are subject to multiple potential failure outcomes, such as death from the cancer itself or from complications arising from the disease. In the analysis of competing risks, several regression methods are available for the evaluation of the relationship between covariates and cause-specific failures, many of which are based on Cox’s proportional hazards model. Although a great deal of research has been conducted on estimating competing risks, less attention has been devoted to linear regression modeling, which is often referred to as the accelerated failure time (AFT) model in survival literature. In this article, we address the use and interpretation of linear regression analysis with regard to the competing risks problem. We introduce two types of AFT modeling framework, where the influence of a covariate can be evaluated in relation to either a cause-specific hazard function, referred to as cause-specific AFT (CS-AFT) modeling in this study, or the cumulative incidence function of a particular failure type, referred to as crude-risk AFT (CR-AFT) modeling. Simulation studies illustrate that, as in hazard-based competing risks analysis, these two models can produce substantially different effects, depending on the relationship between the covariates and both the failure type of principal interest and competing failure types. We apply the AFT methods to data from non-Hodgkin lymphoma patients, where the dataset is characterized by two competing events, disease relapse and death without relapse, and non-proportionality. We demonstrate how the data can be analyzed and interpreted, using linear competing risks regression models.  相似文献   

4.
Summary. Bayesian analysis of system failure data from engineering applications under a competing risks framework is considered when the cause of failure may not have been exactly identified but has only been narrowed down to a subset of all potential risks. In statistical literature, such data are termed masked failure data. In addition to masking, failure times could be right censored owing to the removal of prototypes at a prespecified time or could be interval censored in the case of periodically acquired readings. In this setting, a general Bayesian formulation is investigated that includes most commonly used parametric lifetime distributions and that is sufficiently flexible to handle complex forms of censoring. The methodology is illustrated in two engineering applications with a special focus on model comparison issues.  相似文献   

5.
This article studies the construction of Bayesian confidence interval for the difference of two proportions in the matched-pair design, and applies it to the equiva-lence or non inferiority test. Under the Dirichlet prior distribution, the exact posterior distribution of difference of two proportions is derived. The tail confidence interval and the highest posterior density (HPD) interval are studied, and their frequentist performance are investigated by simulation in terms of the mean coverage probability of interval. Our results suggest to use tail interval at Jeffreys prior for testing equivalence or non inferiority in matched-pair design.  相似文献   

6.
In this article, we deal with the problem of testing a point null hypothesis for the mean of a multivariate power exponential distribution. We study the conditions under which Bayesian and frequentist approaches can match. In this comparison it is observed that the tails of the model are the key to explain the reconciliability or irreconciliability between the two approaches.  相似文献   

7.
ABSTRACT

In survival analysis, individuals may fail due to multiple causes of failure called competing risks setting. Parametric models such as Weibull model are not improper that ignore the assumption of multiple failure times. In this study, a novel extension of Weibull distribution is proposed which is improper and then can incorporate to the competing risks framework. This model includes the original Weibull model before a pre-specified time point and an exponential form for the tail of the time axis. A Bayesian approach is used for parameter estimation. A simulation study is performed to evaluate the proposed model. The conducted simulation study showed identifiability and appropriate convergence of the proposed model. The proposed model and the 3-parameter Gompertz model, another improper parametric distribution, are fitted to the acute lymphoblastic leukemia dataset.  相似文献   

8.
The purpose of this paper is to develop a Bayesian approach for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes and presence of randomized activation mechanisms. We assume the number of competing causes of the event of interest follows a Negative Binomial (NB) distribution while the latent lifetimes are assumed to follow a Weibull distribution. Markov chain Monte Carlos (MCMC) methods are used to develop the Bayesian procedure. Model selection to compare the fitted models is discussed. Moreover, we develop case deletion influence diagnostics for the joint posterior distribution based on the ψ-divergence, which has several divergence measures as particular cases. The developed procedures are illustrated with a real data set.  相似文献   

9.
A general framework is proposed for joint modelling of mixed correlated ordinal and continuous responses with missing values for responses, where the missing mechanism for both kinds of responses is also considered. Considering the posterior distribution of unknowns given all available information, a Markov Chain Monte Carlo sampling algorithm via winBUGS is used for estimating the posterior distribution of the parameters. For sensitivity analysis to investigate the perturbation from missing at random to not missing at random, it is shown how one can use some elements of covariance structure. These elements associate responses and their missing mechanisms. Influence of small perturbation of these elements on posterior displacement and posterior estimates is also studied. The model is illustrated using data from a foreign language achievement study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号