首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
In the context of linear regression with dependent and nonstationary errors, the classical moving-block bootstrap (MBB) fails to capture the nonstationarity of the errors. A new bootstrap procedure called the blocking external bootstrap (BEB) is proposed to overcome the problem. The consistency of the BEB in estimating the variance of the least-squares estimator is studied in the case of α-mixing and nonstationary sequence of errors. It is shown that the BEB only achieves partial correction if the block size is fixed. Complete consistency is achieved by the BEB when the block size is allowed to go to infinity. We also study the first-order consistency of the least squares estimator based on the BEB. A simulation study is carried out to assess the performance of the BEB versus the MBB in estimating the variance of the least-squares estimator. Finally, some open problems are discussed.  相似文献   

2.
Twenty-four-hour urinary excretion of nicotine equivalents, a biomarker for exposure to cigarette smoke, has been widely used in biomedical studies in recent years. Its accurate estimate is important for examining human exposure to tobacco smoke. The objective of this article is to compare the bootstrap confidence intervals of nicotine equivalents with the standard confidence intervals derived from linear mixed model (LMM) and generalized estimation equation. We use percentile bootstrap method because it has practical value for real-life application and it works well with nicotine data. To preserve the within-subject correlation of nicotine equivalents between repeated measures, we bootstrap the repeated measures of each subject as a vector. The results indicate that the bootstrapped estimates in most cases give better estimates than the LMM and generalized estimation equation without bootstrap.  相似文献   

3.
The main contribution of this paper is a proof of the asymptotic validity of the application of the bootstrap to AR(∞) processes with unmodelled conditional heteroskedasticity. We first derive the asymptotic properties of the least-squares estimator of the autoregressive sieve parameters when the data are generated by a stationary linear process with martingale difference errors that are possibly subject to conditional heteroskedasticity of unknown form. These results are then used in establishing that a suitably constructed bootstrap estimator will have the same limit distribution as the least-squares estimator. Our results provide theoretical justification for the use of either the conventional asymptotic approximation based on robust standard errors or the bootstrap approximation of the distribution of autoregressive parameters. A simulation study suggests that the bootstrap approach tends to be more accurate in small samples.  相似文献   

4.
《Econometric Reviews》2007,26(6):609-641
The main contribution of this paper is a proof of the asymptotic validity of the application of the bootstrap to AR(∞) processes with unmodelled conditional heteroskedasticity. We first derive the asymptotic properties of the least-squares estimator of the autoregressive sieve parameters when the data are generated by a stationary linear process with martingale difference errors that are possibly subject to conditional heteroskedasticity of unknown form. These results are then used in establishing that a suitably constructed bootstrap estimator will have the same limit distribution as the least-squares estimator. Our results provide theoretical justification for the use of either the conventional asymptotic approximation based on robust standard errors or the bootstrap approximation of the distribution of autoregressive parameters. A simulation study suggests that the bootstrap approach tends to be more accurate in small samples.  相似文献   

5.
We construct bootstrap confidence intervals for smoothing spline estimates based on Gaussian data, and penalized likelihood smoothing spline estimates based on data from .exponential families. Several vari- ations of bootstrap confidence intervals are considered and compared. We find that the commonly used ootstrap percentile intervals are inferior to the T intervals and to intervals based on bootstrap estimation of mean squared errors. The best variations of the bootstrap confidence intervals behave similar to the well known Bayesian confidence intervals. These bootstrap confidence intervals have an average coverage probability across the function being estimated, as opposed to a pointwise property.  相似文献   

6.
Automatic Block-Length Selection for the Dependent Bootstrap   总被引:2,自引:0,他引:2  
We review the different block bootstrap methods for time series, and present them in a unified framework. We then revisit a recent result of Lahiri [Lahiri, S. N. (1999b). Theoretical comparisons of block bootstrap methods, Ann. Statist. 27:386-404] comparing the different methods and give a corrected bound on their asymptotic relative efficiency; we also introduce a new notion of finite-sample “attainable” relative efficiency. Finally, based on the notion of spectral estimation via the flat-top lag-windows of Politis and Romano [Politis, D. N., Romano, J. P. (1995). Bias-corrected nonparametric spectral estimation. J. Time Series Anal. 16:67-103], we propose practically useful estimators of the optimal block size for the aforementioned block bootstrap methods. Our estimators are characterized by the fastest possible rate of convergence which is adaptive on the strength of the correlation of the time series as measured by the correlogram.  相似文献   

7.
Block bootstrap methods are applied to kernel-type density estimator and its derivatives for ψ-weakly dependent processes. Nonparametric density estimation is discussed via moving block bootstrap (MBB) and disjoint block bootstrap (DBB). Asymptotic validity is proved for MBB and DBB. A Monte-Carlo experiment compares confidence intervals based on MBB and DBB with an existing method based on normal approximation (NA) in terms of serial correlation, dynamic asymmetry, and conditional heteroscedasticity. The experiment shows that, in cases of substantial serial correlation, MBB and DBB perform better than NA and, in the other cases, MBB and DBB perform as good as NA.  相似文献   

8.
Eunju Hwang 《Statistics》2017,51(4):844-861
This paper studies the stationary bootstrap applicability for realized covariations of high frequency asynchronous financial data. The stationary bootstrap method, which is characterized by a block-bootstrap with random block length, is applied to estimate the integrated covariations. The bootstrap realized covariance, bootstrap realized regression coefficient and bootstrap realized correlation coefficient are proposed, and the validity of the stationary bootstrapping for them is established both for large sample and for finite sample. Consistencies of bootstrap distributions are established, which provide us valid stationary bootstrap confidence intervals. The bootstrap confidence intervals do not require a consistent estimator of a nuisance parameter arising from nonsynchronous unequally spaced sampling while those based on a normal asymptotic theory require a consistent estimator. A Monte-Carlo comparison reveals that the proposed stationary bootstrap confidence intervals have better coverage probabilities than those based on normal approximation.  相似文献   

9.
A version of the nonparametric bootstrap, which resamples the entire subjects from original data, called the case bootstrap, has been increasingly used for estimating uncertainty of parameters in mixed‐effects models. It is usually applied to obtain more robust estimates of the parameters and more realistic confidence intervals (CIs). Alternative bootstrap methods, such as residual bootstrap and parametric bootstrap that resample both random effects and residuals, have been proposed to better take into account the hierarchical structure of multi‐level and longitudinal data. However, few studies have been performed to compare these different approaches. In this study, we used simulation to evaluate bootstrap methods proposed for linear mixed‐effect models. We also compared the results obtained by maximum likelihood (ML) and restricted maximum likelihood (REML). Our simulation studies evidenced the good performance of the case bootstrap as well as the bootstraps of both random effects and residuals. On the other hand, the bootstrap methods that resample only the residuals and the bootstraps combining case and residuals performed poorly. REML and ML provided similar bootstrap estimates of uncertainty, but there was slightly more bias and poorer coverage rate for variance parameters with ML in the sparse design. We applied the proposed methods to a real dataset from a study investigating the natural evolution of Parkinson's disease and were able to confirm that the methods provide plausible estimates of uncertainty. Given that most real‐life datasets tend to exhibit heterogeneity in sampling schedules, the residual bootstraps would be expected to perform better than the case bootstrap. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
《Econometric Reviews》2013,32(1):53-70
Abstract

We review the different block bootstrap methods for time series, and present them in a unified framework. We then revisit a recent result of Lahiri [Lahiri, S. N. (1999b). Theoretical comparisons of block bootstrap methods, Ann. Statist. 27:386–404] comparing the different methods and give a corrected bound on their asymptotic relative efficiency; we also introduce a new notion of finite-sample “attainable” relative efficiency. Finally, based on the notion of spectral estimation via the flat-top lag-windows of Politis and Romano [Politis, D. N., Romano, J. P. (1995). Bias-corrected nonparametric spectral estimation. J. Time Series Anal. 16:67–103], we propose practically useful estimators of the optimal block size for the aforementioned block bootstrap methods. Our estimators are characterized by the fastest possible rate of convergence which is adaptive on the strength of the correlation of the time series as measured by the correlogram.  相似文献   

11.
We propose bootstrap prediction intervals for an observation h periods into the future and its conditional mean. We assume that these forecasts are made using a set of factors extracted from a large panel of variables. Because we treat these factors as latent, our forecasts depend both on estimated factors and estimated regression coefficients. Under regularity conditions, asymptotic intervals have been shown to be valid under Gaussianity of the innovations. The bootstrap allows us to relax this assumption and to construct valid prediction intervals under more general conditions. Moreover, even under Gaussianity, the bootstrap leads to more accurate intervals in cases where the cross-sectional dimension is relatively small as it reduces the bias of the ordinary least-squares (OLS) estimator.  相似文献   

12.
This paper establishes the asymptotic validity for the moving block bootstrap as an approximation to the joint distribution of the sum and the maximum of a stationary sequence. An application is made to statistical inference for a positive time series where an extreme value statistic and sample mean provide the maximum likelihood estimates for the model parameters. A simulation study illustrates small sample size behavior of the bootstrap approximation.  相似文献   

13.
We discuss and evaluate bootstrap algorithms for obtaining confidence intervals for parameters in Generalized Linear Models when the data are correlated. The methods are based on a stratified bootstrap and are suited to correlation occurring within “blocks” of data (e.g., individuals within a family, teeth within a mouth, etc.). Application of the intervals to data from a Dutch follow-up study on preterm infants shows the corroborative usefulness of the intervals, while the intervals are seen to be a powerful diagnostic in studying annual measles data. In a simulation study, we compare the coverage rates of the proposed intervals with existing methods (e.g., via Generalized Estimating Equations). In most cases, the bootstrap intervals are seen to perform better than current methods, and are produced in an automatic fashion, so that the user need not know (or have to guess) the dependence structure within a block.  相似文献   

14.
We respond to criticism leveled at bootstrap confidence intervals for the correlation coefficient by recent authors by arguing that in the correlation coefficient case, non–standard methods should be employed. We propose two such methods. The first is a bootstrap coverage coorection algorithm using iterated bootstrap techniques (Hall, 1986; Beran, 1987a; Hall and Martin, 1988) applied to ordinary percentile–method intervals (Efron, 1979), giving intervals with high coverage accuracy and stable lengths and endpoints. The simulation study carried out for this method gives results for sample sizes 8, 10, and 12 in three parent populations. The second technique involves the construction of percentile–t bootstrap confidence intervals for a transformed correlation coefficient, followed by an inversion of the transformation, to obtain “transformed percentile–t” intervals for the correlation coefficient. In particular, Fisher's z–transformation is used, and nonparametric delta method and jackknife variance estimates are used to Studentize the transformed correlation coefficient, with the jackknife–Studentized transformed percentile–t interval yielding the better coverage accuracy, in general. Percentile–t intervals constructed without first using the transformation perform very poorly, having large expected lengths and erratically fluctuating endpoints. The simulation study illustrating this technique gives results for sample sizes 10, 15 and 20 in four parent populations. Our techniques provide confidence intervals for the correlation coefficient which have good coverage accuracy (unlike ordinary percentile intervals), and stable lengths and endpoints (unlike ordinary percentile–t intervals).  相似文献   

15.
Dong Wan Shin 《Statistics》2015,49(1):209-223
Stationary bootstrapping is applied to panel cointegration tests which are based on the ordinary least-squares estimator and the seemingly unrelated regression (SUR) estimator of the residual unit root. Large sample validity of stationary bootstrapping is established. A finite sample experiment reveals that size performances of the bootstrap tests are much less sensitive to cross-sectional correlation than those of existing tests and a test based on the SUR estimator has substantially better power than existing tests.  相似文献   

16.
Leave-one-out and 632 bootstrap are popular data-based methods of estimating the true error rate of a classification rule, but practical applications almost exclusively quote only point estimates. Interval estimation would provide better assessment of the future performance of the rule, but little has been published on this topic. We first review general-purpose jackknife and bootstrap methodology that can be used in conjunction with leave-one-out estimates to provide prediction intervals for true error rates of classification rules. Monte Carlo simulation is then used to investigate coverage rates of the resulting intervals for normal data, but the results are disappointing; standard intervals show considerable overinclusion, intervals based on Edgeworth approximations or random weighting do not perform well, and while a bootstrap approach provides intervals with coverage rates closer to the nominal ones there is still marked underinclusion. We then turn to intervals constructed from 632 bootstrap estimates, and show that much better results are obtained. Although there is now some overinclusion, particularly for large training samples, the actual coverage rates are sufficiently close to the nominal rates for the method to be recommended. An application to real data illustrates the considerable variability that can arise in practical estimation of error rates.  相似文献   

17.
We show that the linear process bootstrap (LPB) and the autoregressive sieve bootstrap (AR sieve) are, in general, not valid for statistics whose large-sample distribution depends on moments of order higher than two, irrespective of whether the data come from a linear time series or not. Inspired by the block-of-blocks bootstrap, we circumvent this non-validity by applying the LPB and AR sieve to suitably blocked data and not to the original data itself. In a simulation study, we compare the LPB, AR sieve, and moving block bootstrap applied directly and to blocked data.  相似文献   

18.
In this paper, we consider the problem of empirical choice of optimal block sizes for block bootstrap estimation of population parameters. We suggest a nonparametric plug-in principle that can be used for estimating ‘mean squared error’-optimal smoothing parameters in general curve estimation problems, and establish its validity for estimating optimal block sizes in various block bootstrap estimation problems. A key feature of the proposed plug-in rule is that it can be applied without explicit analytical expressions for the constants that appear in the leading terms of the optimal block lengths. Furthermore, we also discuss the computational efficacy of the method and explore its finite sample properties through a simulation study.  相似文献   

19.
Quasi-stationary distributions have many applications in diverse research fields. We develop a bootstrap-based maximum likelihood (BML) method to deal with quasi-stationary distributions in statistical inference. To efficiently implement a bootstrap procedure that can handle the dependence among observations and speed up the computation, a novel block bootstrap algorithm is proposed to accommodate parallel bootstrap. In particular, we select a suitable block length for use with the parallel bootstrap. The estimation error is investigated to show its convergence. The proposed BML is shown to be asymptotically unbiased. Some numerical studies are given to examine the performance of the new algorithm. The advantages are evidenced through a comparison with some competitors and some examples are analysed for illustration.  相似文献   

20.
We present an application of subsampling and bootstrap methods for time series to determine the distribution of the estimator of zero crossings. The zero crossings method provides an alternative estimator of the lag-1 autocorrelation coefficient that is reducing the data storage requirements and is more robust with respect to outliers when compared to the classical estimator. The main results here are showing the consistency of subsampling, the consistency of moving block bootstrap, the consistency of non overlapping block bootstrap and the consistency of stationary bootstrap for this estimator. Theorems are formulated for Gaussian processes, elliptically symmetric processes and processes which are transformed Gaussian processes. Theoretical results are illustrated by simulations and practical data analysis. We have also shown that in practice the MBB method behaves better than the subsampling method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号