首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在一般的《高等数学》教材中,曲线y=f(x)的水平渐近线是由极限定义的,即,如果limf(x)=A,则直线y=A是曲线y=f(x)的水平渐近线.该定义以及它的一般求法在实际问题中得到了广泛的应用,但定义中所包含的一种情形在教材中并没有得到明确,以致于在教学中教师和学生对此产生困惑。  相似文献   

2.
判定曲线凹凸性与拐点,我们常用“雨水法则”:对于区间(a,b)内任-x值,若f″(x)>0,则曲线y=f(x)在(a,b)内是凹的;若f″(x)<0,则曲线y=f(x)在(a,b)内是凸的。如果f(x)在稳定点x0。处(满足f″(x)=0)改变其曲线的凹凸方向,则点(x0,f(x0))称之为曲线f(x)上的一个拐点。即是说,要判定点(x0,f(x0))是否为f(x)的一个拐点,只需确定点x0处左右近旁f″(x)的符号。是否能通过求在x0处的导函数之值来确定曲线凹凸性与拐点呢?就此问题,本文作出如下探讨。1结论定理:设函数=f(x)在(a,b)内具有n阶…  相似文献   

3.
关于二元函数f(x,y)为可微的充分条件,在一般中文教科书里是这样给出的: 若函数Z=f(x,y)的偏导数f_x、f_y在点(a,b)及其某一邻域内存在,且在这一点它们都连续,则函数f(x,y)在点(a,b)可微。 然而,这种要求f_x,f_y同时在点(a,b)存在且连续的条件实在太苛刻了。LouisBrand在他的书(详见参考文献)中,减弱了该条件,证得了f(x,y)在点(a,b)  相似文献   

4.
<正> 关于含参量积分顺序可交换的条件,一般教科书上都表述为: 定理1 若f(x,y)在R[a,b;c,d]上连续,则 integral from n=h to b(dx) integral from n=c to d f(x,y)dy=integral from n=c to d(dy) integral from n=h to bf(x,y)dx。 如所周知,其中“f(x,y)在R[a,b;d]上连续”的条件是很强的,用它刻划积分顺序的可交换性甚不理想。比如  相似文献   

5.
多元复合函数求导是多元函数微分学的教学重点之一,又是教学的一个难点,本文就这部分内容的教学谈点粗浅体会。 利用图形、记忆法则 多元复合函数求导法则: 若函数u=φ(x,y),v=ψ(x,y)在点(x,y)有偏导数,函数z=f(x,y)在对应点(u,v)有连续偏导数,则复合函数z=f[φ(x,y),ψ(x,y)]在点(x,y)有对x及y的偏导数,且计算公式:  相似文献   

6.
设连续函数y=f(x)定义在闭区间[a,b]上,它的图象为曲线LM。在曲线LM上考虑相邻两个点P(x,y)和Q(x+dx,,y+dy),如图1.过P点作曲线的切线交oy轴于点T,过T作ox轴的平行线分别交PC、QD于A、B两点,其中PC、QD都垂直于ox轴。OS⊥PT。记P为OS的长度,z为点T的纵标,于是z=oT=AC=BD。  相似文献   

7.
我们知道,函数y=f(x)在点x处的导数f'(x)表示曲线y=f(x)在点p(x,y)处的切线的斜率。掌握了这一概念,对于求曲线在茶点处的切线的方程将带来很大的方便。但是,我们讲导数的几何意义时,应着重强调“在点x处”(即点(x,y)在曲线y=f(x)上),这是它的前提,应让学生全面了解、掌握这一概念,否则学生对这一概念的认识只是表面的,而不能从本质上理解它。我在讲完这节后,有意安排了下面这道题,结果发现了以下错解:题:过点M(1,2)作抛物线y二Zx-x’的切线求切线方程:解:(错解)·y“ZxXZ’.y’=22X.”.k、y…  相似文献   

8.
算术—几何平均不等式的证明方法很多,下面提供一种利用导数的证明,设a1,a2,…,an都是正数,则,当且仅当a1=a2=…an时等式成立.证明:用数学归纳法.当n=2时命题已然成立.假设当n=k时命题成立,即当且仅当a1=a2=…=ak时等式成立.引入函数f(x)=(x+a1+a2+…+ak)k+1-(k+1)k+1a1a2…akx,则当k为奇数,由f′(x)=0得唯一驻点故f(x)当x=x1时有极小值也是最小值f(x1),即f(x)≥f(x1).当k为偶数,由厂(。)一0沿两个驻点。;=(k+l)Jii.-------.---(。;+a。+…+。。),x。—-(k+l》不7二…  相似文献   

9.
在平面解析几何里,介绍了所给双曲线是标准方程x~2/a~2-y~2/b~2=1时,它的渐近线的求法(此时它有两条渐近线,其方程为y=±(b/a)x))。对于双曲线的一般方程,固然可以利用坐  相似文献   

10.
本文运用K.Kaneko本征函数展开的绝热消去的思想方法,建立了x方向为乘法高斯白噪音驱动,y方向为加法高斯白噪音驱动的消去快变量框架。对于耦合朗之万方程x=f(x、y)+g(x)ξ_x(t);y=-va(x、y)+b(x)+v~(1/2)ξ_y(t);在选择基矢时把b(x)部分合并到含x偏导的那部分方程中去,并把所得到的一般性方程应用于哈肯模型,发现在加法噪音和乘法噪音下不仅是分岔点发生移动,而且分岔曲线在∈_p= -v/2处截止。  相似文献   

11.
给出二元方程式F(x,y)=0确定的函数曲线渐近线的几个结果。  相似文献   

12.
本文把一元函数f:R~1→R~1的微分中值定理推广到二元函数f:R~2→R~1上,下面是二元函数z=f(x,y)的微分中值定理。 定理 设函数z=f(x,y)在区域D上连续,在D内关于x和y的两个偏导数连续,且算子1×2矩阵的范,则对D内任意两点(x_1,y_1)、(x_2,y_2)有  相似文献   

13.
在高等数学中计算分段函数导数时,求分段点的导数,一般都是用导数定义去计算。本文给出一种计算分段函数在分段点的导数的切实可行的方法。 先利用Lagrange中值定理给出下列定理。 定理一:设函数f(x)在区间[x_0,x_0+H](H>0)内是连续的,并且当x>x_0时,f′(x)存在  相似文献   

14.
由于函数y=f(u)和u=ψ(x)构成的复合函数y=f[ψ(x)],其单调性的习题常见于各种教材及习题集中。特别是在高三总复习阶段,总结一下解题方法是有必要的。本文给出的定理,是把复合函数的单调性问题转化为基本初等函数的单调性问题。 我们约定:在复合函数y=f[ψ(x)]中u=ψ(x)称为里层函数,y=f(u)称为外层函数。  相似文献   

15.
积分中值定理在一般的《数学分析》教材中是这样叙述的:当f(x)在[a,b]上连续时,有integral from n=a to b(f(x)dx=f(ξ)(b—a)),其中ξ∈[a,b]本文将对该结论做一点推广,即当f(x)在[a,b]上连续时,有integral from n=a to b(f(x)dx=f(ξ)(b—a),其中g∈(a,b)。  相似文献   

16.
复合函数极限的存在性   总被引:2,自引:0,他引:2  
郭明普 《南都学坛》2001,21(6):91-92
讨论了如果两个函数y =f(u)与u =φ(x)的极限都存在 ,不妨设limx→x0φ(x) =u0 ,limu→u0f(u) =A ,则复合函数f[φ(x) ]在x0 点是否存在极限 ?如果复合函数f[φ(x) ]的极限存在 ,那么是否还等于A ?通过论证得到 ,并不能由limx→x0φ(x) ,limu→u0f(u)的存在性推出limx→x0f[φ(x) ]的存在性。  相似文献   

17.
用两变量方法讨论了一类二阶非线性方程εy″+a(x) y′+b(x) y″=0 ,n∈ Z,x∈ (0 ,1 ) ,y(0 ) =α,y(1 ) =β,并得到了该类非线性方程的渐近解  相似文献   

18.
在中学数学中,有函数图象的平移变换与伸缩变换问题,方程的曲线的对称变换问题。这几类问题的解决,都可以用一种共同的思想方法──图象中的对应点的变换。1平移变换例1把直线l向在平移1个单位,再向上平移2个单位,所得直线l’与l重合。求直线l的斜率。分析:直线l:y=kx+b平移变换后所得直线产,可理解为直线l上的一点(x0,y0),平移变换后得到直线l’上的一个对应点(x,y),这里x,y的关系式即为直线l’的方程。把点(x0,y0)向左平移1个单位,再向上平移2个单位,所得点为(xo-1,y0+2),因此x=x0-1,y=y0+2,即x0=x…  相似文献   

19.
一般来说,在直角坐标系中,两个变量x、y的多项式方程f(x,y)=0确定平面上一条(实)曲线,而不在曲线f(x,y)=0上的所有点由曲线划分成有限多个区域(连通开集)D_1、D_2、……D_n。在每个区域D_i内,多项式f(x,y)或者恒为正的,或者恒为负的。因此,对于给定区域内判断f(x,y)>0,或者f(x,y)<0,只须在该区域内任取一点计算其对应的值就完全可以了。  相似文献   

20.
本文讨论由f(x)和f~(n+1)(x)的性质来决定f'(x),f″(x),…,f~(a)(x)的相应性质这样一个问题,得到几个有趣而优美的结果。譬如:设f(x)在区间(a,)上有直到(n+1)阶的导数,那么当f(x)=0且f~(n+1)(x)=0时,必有f(x)=0……f~(n)(x)=0。这些结果给出了函数和它的各阶导数之间的某种深刻联系,这种联系和极限的两边夹定理有着一定的类似之处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号