首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A tree T in an edge-colored graph is called a proper tree if no two adjacent edges of T receive the same color. Let G be a connected graph of order n and k be an integer with \(2\le k \le n\). For \(S\subseteq V(G)\) and \(|S| \ge 2\), an S-tree is a tree containing the vertices of S in G. A set \(\{T_1,T_2,\ldots ,T_\ell \}\) of S-trees is called internally disjoint if \(E(T_i)\cap E(T_j)=\emptyset \) and \(V(T_i)\cap V(T_j)=S\) for \(1\le i\ne j\le \ell \). For a set S of k vertices of G, the maximum number of internally disjoint S-trees in G is denoted by \(\kappa (S)\). The k-connectivity \(\kappa _k(G)\) of G is defined by \(\kappa _k(G)=\min \{\kappa (S)\mid S\) is a k-subset of \(V(G)\}\). For a connected graph G of order n and for two integers k and \(\ell \) with \(2\le k\le n\) and \(1\le \ell \le \kappa _k(G)\), the \((k,\ell )\)-proper index \(px_{k,\ell }(G)\) of G is the minimum number of colors that are required in an edge-coloring of G such that for every k-subset S of V(G), there exist \(\ell \) internally disjoint proper S-trees connecting them. In this paper, we show that for every pair of positive integers k and \(\ell \) with \(k \ge 3\) and \(\ell \le \kappa _k(K_{n,n})\), there exists a positive integer \(N_1=N_1(k,\ell )\) such that \(px_{k,\ell }(K_n) = 2\) for every integer \(n \ge N_1\), and there exists also a positive integer \(N_2=N_2(k,\ell )\) such that \(px_{k,\ell }(K_{m,n}) = 2\) for every integer \(n \ge N_2\) and \(m=O(n^r) (r \ge 1)\). In addition, we show that for every \(p \ge c\root k \of {\frac{\log _a n}{n}}\) (\(c \ge 5\)), \(px_{k,\ell }(G_{n,p})\le 2\) holds almost surely, where \(G_{n,p}\) is the Erd?s–Rényi random graph model.  相似文献   

2.
For a set of nonnegative integers \(c_1, \ldots , c_k\), a \((c_1, c_2,\ldots , c_k)\)-coloring of a graph G is a partition of V(G) into \(V_1, \ldots , V_k\) such that for every i, \(1\le i\le k, G[V_i]\) has maximum degree at most \(c_i\). We prove that all planar graphs without 4-cycles and no less than two edges between triangles are (2, 0, 0)-colorable.  相似文献   

3.
For \(S\subseteq G\), let \(\kappa (S)\) denote the maximum number r of edge-disjoint trees \(T_1, T_2, \ldots , T_r\) in G such that \(V(T_i)\cap V(T_j)=S\) for any \(i,j\in \{1,2,\ldots ,r\}\) and \(i\ne j\). For every \(2\le k\le n\), the k-connectivity of G, denoted by \(\kappa _k(G)\), is defined as \(\kappa _k(G)=\hbox {min}\{\kappa (S)| S\subseteq V(G)\ and\ |S|=k\}\). Clearly, \(\kappa _2(G)\) corresponds to the traditional connectivity of G. In this paper, we focus on the structure of minimally 2-connected graphs with \(\kappa _{3}=2\). Denote by \(\mathcal {H}\) the set of minimally 2-connected graphs with \(\kappa _{3}=2\). Let \(\mathcal {B}\subseteq \mathcal {H}\) and every graph in \(\mathcal {B}\) is either \(K_{2,3}\) or the graph obtained by subdividing each edge of a triangle-free 3-connected graph. We obtain that \(H\in \mathcal {H}\) if and only if \(H\in \mathcal {B}\) or H can be constructed from one or some graphs \(H_{1},\ldots ,H_{k}\) in \(\mathcal {B}\) (\(k\ge 1\)) by applying some operations recursively.  相似文献   

4.
Let \(k\ge 2, p\ge 1, q\ge 0\) be integers. We prove that every \((4kp-2p+2q)\)-connected graph contains p spanning subgraphs \(G_i\) for \(1\le i\le p\) and q spanning trees such that all \(p+q\) subgraphs are pairwise edge-disjoint and such that each \(G_i\) is k-edge-connected, essentially \((2k-1)\)-edge-connected, and \(G_i -v\) is \((k-1)\)-edge-connected for all \(v\in V(G)\). This extends the well-known result of Nash-Williams and Tutte on packing spanning trees, a theorem that every 6p-connected graph contains p pairwise edge-disjoint spanning 2-connected subgraphs, and a theorem that every \((6p+2q)\)-connected graph contains p spanning 2-connected subgraphs and q spanning trees, which are all pairwise edge-disjoint. As an application, we improve a result on k-arc-connected orientations.  相似文献   

5.
For graphs G and H, let \(G\rightarrow (H,H)\) signify that any red/blue edge coloring of G contains a monochromatic H as a subgraph. Denote \(\mathcal {H}(\Delta ,n)=\{H:|V(H)|=n,\Delta (H)\le \Delta \}\). For any \(\Delta \) and n, we say that G is partition universal for \(\mathcal {H}(\Delta ,n)\) if \(G\rightarrow (H,H)\) for every \(H\in \mathcal {H}(\Delta ,n)\). Let \(G_r(N,p)\) be the random spanning subgraph of the complete r-partite graph \(K_r(N)\) with N vertices in each part, in which each edge of \(K_r(N)\) appears with probability p independently and randomly. We prove that for fixed \(\Delta \ge 2\) there exist constants rB and C depending only on \(\Delta \) such that if \(N\ge Bn\) and \(p=C(\log N/N)^{1/\Delta }\), then asymptotically almost surely \(G_r(N,p)\) is partition universal for \(\mathcal {H}(\Delta ,n)\).  相似文献   

6.
Let \(G=(V, E)\) be a graph. Denote \(d_G(u, v)\) the distance between two vertices u and v in G. An L(2, 1)-labeling of G is a function \(f: V \rightarrow \{0,1,\ldots \}\) such that for any two vertices u and v, \(|f(u)-f(v)| \ge 2\) if \(d_G(u, v) = 1\) and \(|f(u)-f(v)| \ge 1\) if \(d_G(u, v) = 2\). The span of f is the difference between the largest and the smallest number in f(V). The \(\lambda \)-number \(\lambda (G)\) of G is the minimum span over all L(2, 1)-labelings of G. In this paper, we conclude that the \(\lambda \)-number of each brick product graph is 5 or 6, which confirms Conjecture 6.1 stated in Li et al. (J Comb Optim 25:716–736, 2013).  相似文献   

7.
Based on the well-known longest increasing subsequence problem and longest common increasing subsequence (LCIS) problem, we propose the longest commonly positioned increasing subsequences (LCPIS) problem. Let \(A=\langle a_1,a_2,\ldots ,a_n\rangle \) and \(B{=}\left\langle b_1,b_2,\ldots ,b_n\right\rangle \) be two input sequences. Let \({ Asub}=\left\langle a_{i_1},a_{i_2},\ldots ,a_{i_l}\right\rangle \) be a subsequence of A and \({ Bsub}=\left\langle b_{j_1},b_{j_2},\ldots ,b_{j_l}\right\rangle \) be a subsequence of B such that \(a_{i_k}\le a_{i_{k+1}}, b_{j_k}\le b_{j_{k+1}}(1\le k<l)\), and \(a_{i_k}\) and \(b_{j_k}\) (\(1\le k\le l\)) are commonly positioned (have the same index \(i_k=j_k\)) in A and B respectively but these two elements do not need to be equal. The LCPIS problem aims at finding a pair of subsequences Asub and \({ Bsub}\) as long as possible. When all the elements of the two input sequences are positive integers, this paper presents an algorithm with \(O(n\log n \log \log M)\) time to compute the LCPIS, where \(M={ min}\{{ max}_{1\le i\le n}a_i,{ max}_{1\le j\le n}b_j\}\). And we also show a dual relationship between the LCPIS problem and the LCIS problem.  相似文献   

8.
A proper total k-coloring \(\phi \) of a graph G is a mapping from \(V(G)\cup E(G)\) to \(\{1,2,\dots , k\}\) such that no adjacent or incident elements in \(V(G)\cup E(G)\) receive the same color. Let \(m_{\phi }(v)\) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if \(m_{\phi }(u)\not =m_{\phi }(v)\) for each edge \(uv\in E(G).\) Let \(\chi _{\Sigma }^t(G)\) be the neighbor sum distinguishing total chromatic number of a graph G. Pil?niak and Wo?niak conjectured that for any graph G, \(\chi _{\Sigma }^t(G)\le \Delta (G)+3\). In this paper, we show that if G is a graph with treewidth \(\ell \ge 3\) and \(\Delta (G)\ge 2\ell +3\), then \(\chi _{\Sigma }^t(G)\le \Delta (G)+\ell -1\). This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when \(\ell =3\) and \(\Delta \ge 9\), we show that \(\Delta (G) + 1\le \chi _{\Sigma }^t(G)\le \Delta (G)+2\) and characterize graphs with equalities.  相似文献   

9.
The status of a vertex v in a connected graph G is the sum of the distances between v and all the other vertices of G. The subgraph induced by the vertices of minimum (maximum) status in G is called median (anti-median) of G. Let \(H=(G_1,G_2,r)\) denote a graph with \(G_1\) as the median and \(G_2\) as the anti-median of H, \(d(G_1,G_2)=r\) and both \(G_1\) and \(G_2\) are convex subgraphs of H. It is known that \((G_1,G_2,r)\) exists for every \(G_1\), \(G_2\) with \(r \ge \left\lfloor diam(G_1)/2\right\rfloor +\left\lfloor diam(G_2)/2\right\rfloor +2\). In this paper we show the existence of \((G_1,G_2,r)\) for every \(G_1\), \(G_2\) and \(r \ge 1\). We also obtain a sharp upper bound for the maximum status difference in a graph G.  相似文献   

10.
We study the maximum coverage problem with group budget constraints (MCG). The input consists of a ground set X, a collection \(\psi \) of subsets of X each of which is associated with a combinatorial structure such that for every set \(S_j\in \psi \), a cost \(c(S_j)\) can be calculated based on the combinatorial structure associated with \(S_j\), a partition \(G_1,G_2,\ldots ,G_l\) of \(\psi \), and budgets \(B_1,B_2,\ldots ,B_l\), and B. A solution to the problem consists of a subset H of \(\psi \) such that \(\sum _{S_j\in H} c(S_j) \le B\) and for each \(i \in {1,2,\ldots ,l}\), \(\sum _{S_j \in H\cap G_i}c(S_j)\le B_i\). The objective is to maximize \(|\bigcup _{S_j\in H}S_j|\). In our work we use a new and improved analysis of the greedy algorithm to prove that it is a \((\frac{\alpha }{3+2\alpha })\)-approximation algorithm, where \(\alpha \) is the approximation ratio of a given oracle which takes as an input a subset \(X^{new}\subseteq X\) and a group \(G_i\) and returns a set \(S_j\in G_i\) which approximates the optimal solution for \(\max _{D\in G_i}\frac{|D\cap X^{new}|}{c(D)}\). This analysis that is shown here to be tight for the greedy algorithm, improves by a factor larger than 2 the analysis of the best known approximation algorithm for MCG.  相似文献   

11.
A proper k-total coloring of a graph G is a mapping from \(V(G)\cup E(G)\) to \(\{1,2,\ldots ,k\}\) such that no two adjacent or incident elements in \(V(G)\cup E(G)\) receive the same color. Let f(v) denote the sum of the colors on the edges incident with v and the color on vertex v. A proper k-total coloring of G is called neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). Let \(\chi ''_{\Sigma }(G)\) denote the smallest integer k in such a coloring of G. Pil?niak and Wo?niak conjectured that for any graph G, \(\chi ''_{\Sigma }(G)\le \Delta (G)+3\). In this paper, we show that if G is a 2-degenerate graph, then \(\chi ''_{\Sigma }(G)\le \Delta (G)+3\); Moreover, if \(\Delta (G)\ge 5\) then \(\chi ''_{\Sigma }(G)\le \Delta (G)+2\).  相似文献   

12.
Let \(N=\{1,\dots ,n\}\) be a set of customers who want to buy a single homogenous goods in market. Let \(q_i>0\) be the quantity that \(i\in N\) demands, \(q=(q_1,\dots ,q_n)\) and \(q_S=\sum _{i\in S}q_i\) for \(S\subseteq N\). If f(s) is a (increasing and concave) cost function, then it yields a cooperative game (Nfq) by defining characteristic function \(v(S)=f(q_S)\) for \(S\subseteq N\). We now consider the way of taking packages of goods by customers and define a communication graph L on N, in which i and j are linked if they can take packages for each other. So if i and j are connected, then a package can be delivered from i to j by some intermediators. We thus admit any connected subset as a feasible coalition, and obtain a game (NfqL) by defining characteristic function \(v_L(S)=\sum _{R\in S/L}f(q_R)\) for \(S\subseteq N\), where S / L is the family of induced components (maximal connected subset) in S. It is shown that there is an allocation (cost shares) \(x=(x_1,\dots ,x_n)\) from the core for the game (\(x_S\le v_L(S)\) for any \(S\subseteq N\)) such that x satisfies Component Efficiency and Ranking for Unit Prices. If f(s) and q satisfy some further condition, then there is an allocation x from the core such that x satisfies Component Efficiency, and \(x_i \le x_j\) and \(\frac{x_i}{q_i} \ge \frac{x_j}{q_j}\) if \(q_i \le q_j\) for i and j in the same component of N.  相似文献   

13.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent or incident elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. An adjacent vertex distinguishing total-k-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ^{\prime \prime }_{a}(G)\). It is known that \(\chi _{a}^{\prime \prime }(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 10\). In this paper, we consider the list version of this coloring and show that if G is a planar graph with \(\Delta (G)\ge 11\), then \({ ch}_{a}^{\prime \prime }(G)\le \Delta (G)+3\), where \({ ch}^{\prime \prime }_a(G)\) is the adjacent vertex distinguishing total choosability.  相似文献   

14.
Let \(G=(V,E)\) be a graph and \(\phi : V\cup E\rightarrow \{1,2,\ldots ,k\}\) be a proper total coloring of G. Let f(v) denote the sum of the color on a vertex v and the colors on all the edges incident with v. The coloring \(\phi \) is neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number of G, denoted by \(\chi _{\Sigma }''(G)\). Pil?niak and Wo?niak conjectured that \(\chi _{\Sigma }''(G)\le \Delta (G)+3\) for any simple graph. By using the famous Combinatorial Nullstellensatz, we prove that \(\chi _{\Sigma }''(G)\le \max \{\Delta (G)+2, 10\}\) for planar graph G without 4-cycles. The bound \(\Delta (G)+2\) is sharp if \(\Delta (G)\ge 8\).  相似文献   

15.
A k-(2, 1)-total labelling of a graph G is a mapping \(f: V(G)\cup E(G)\rightarrow \{0,1,\ldots ,k\}\) such that adjacent vertices or adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least 2. The (2, 1)-total number, denoted \(\lambda _2^t(G)\), is the minimum k such that G has a k-(2, 1)-total labelling. Let T be a tree with maximum degree \(\Delta \ge 7\). A vertex \(v\in V(T)\) is called major if \(d(v)=\Delta \), minor if \(d(v)<\Delta \), and saturated if v is major and is adjacent to exactly \(\Delta - 2\) major vertices. It is known that \(\Delta + 1 \le \lambda _2^t(T)\le \Delta + 2\). In this paper, we prove that if every major vertex is adjacent to at most \(\Delta -2\) major vertices, and every minor vertex is adjacent to at most three saturated vertices, then \(\lambda _2^t(T) = \Delta + 1\). The result is best possible with respect to these required conditions.  相似文献   

16.
A total-[k]-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\rightarrow \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let f(v) denote the product of the color of a vertex v and the colors of all edges incident to v. A total-[k]-neighbor product distinguishing-coloring of G is a total-[k]-coloring of G such that \(f(u)\ne f(v)\), where \(uv\in E(G)\). By \(\chi ^{\prime \prime }_{\prod }(G)\), we denote the smallest value k in such a coloring of G. We conjecture that \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that the conjecture holds for complete graphs, cycles, trees, bipartite graphs and subcubic graphs. Furthermore, we show that if G is a \(K_4\)-minor free graph with \(\Delta (G)\ge 4\), then \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+2\).  相似文献   

17.
A vertex subset S of a digraph D is called a dominating set of D if every vertex not in S is adjacent from at least one vertex in S. The domination number of D, denoted by \(\gamma (D)\), is the minimum cardinality of a dominating set of D. The Slater number \(s\ell (D)\) is the smallest integer t such that t added to the sum of the first t terms of the non-increasing out-degree sequence of D is at least as large as the order of D. For any digraph D of order n with maximum out-degree \(\Delta ^+\), it is known that \(\gamma (D)\ge \lceil n/(\Delta ^++1)\rceil \). We show that \(\gamma (D)\ge s\ell (D)\ge \lceil n/(\Delta ^++1)\rceil \) and the difference between \(s\ell (D)\) and \(\lceil n/(\Delta ^++1)\rceil \) can be arbitrarily large. In particular, for an oriented tree T of order n with \(n_0\) vertices of out-degree 0, we show that \((n-n_0+1)/2\le s\ell (T)\le \gamma (T)\le 2s\ell (T)-1\) and moreover, each value between the lower bound \(s\ell (T)\) and the upper bound \(2s\ell (T)-1\) is attainable by \(\gamma (T)\) for some oriented trees. Further, we characterize the oriented trees T for which \(s\ell (T)=(n-n_0+1)/2\) hold and show that the difference between \(s\ell (T)\) and \((n-n_0+1)/2\) can be arbitrarily large. Some other elementary properties involving the Slater number are also presented.  相似文献   

18.
For a graph G, \(\alpha '(G)\) is the matching number of G. Let \(k\ge 2\) be an integer, \(K_{n}\) be the complete graph of order n. Assume that \(G_{1}, G_{2}, \ldots , G_{k}\) is a k-decomposition of \(K_{n}\). In this paper, we show that (1)
$$\begin{aligned} \left\lfloor \frac{n}{2}\right\rfloor \le \sum _{i=1}^{k} \alpha '(G_{i})\le k\left\lfloor \frac{n}{2}\right\rfloor . \end{aligned}$$
(2) If each \(G_{i}\) is non-empty for \(i = 1, \ldots , k\), then for \(n\ge 6k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n+k-1}{2}\right\rfloor . \end{aligned}$$
(3) If \(G_{i}\) has no isolated vertices for \(i = 1, \ldots , k\), then for \(n\ge 8k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n}{2}\right\rfloor +k. \end{aligned}$$
The bounds in (1), (2) and (3) are sharp. (4) When \(k= 2\), we characterize all the extremal graphs which attain the lower bounds in (1), (2) and (3), respectively.
  相似文献   

19.
This paper studies the continuous connected 2-facility location problem (CC2FLP) in trees. Let \(T = (V, E, c, d, \ell , \mu )\) be an undirected rooted tree, where each node \(v \in V\) has a weight \(d(v) \ge 0\) denoting the demand amount of v as well as a weight \(\ell (v) \ge 0\) denoting the cost of opening a facility at v, and each edge \(e \in E\) has a weight \(c(e) \ge 0\) denoting the cost on e and is associated with a function \(\mu (e,t) \ge 0\) denoting the cost of opening a facility at a point x(et) on e where t is a continuous variable on e. Given a subset \(\mathcal {D} \subseteq V\) of clients, and a subset \(\mathcal {F} \subseteq \mathcal {P}(T)\) of continuum points admitting facilities where \(\mathcal {P}(T)\) is the set of all the points on edges of T, when two facilities are installed at a pair of continuum points \(x_1\) and \(x_2\) in \(\mathcal {F}\), the total cost involved in CC2FLP includes three parts: the cost of opening two facilities at \(x_1\) and \(x_2\), K times the cost of connecting \(x_1\) and \(x_2\), and the cost of all the clients in \(\mathcal {D}\) connecting to some facility. The objective is to open two facilities at a pair of continuum points in \(\mathcal {F}\) to minimize the total cost, for a given input parameter \(K \ge 1\). This paper focuses on the case of \(\mathcal {D} = V\) and \(\mathcal {F} = \mathcal {P}(T)\). We first study the discrete version of CC2FLP, named the discrete connected 2-facility location problem (DC2FLP), where two facilities are restricted to the nodes of T, and devise a quadratic time edge-splitting algorithm for DC2FLP. Furthermore, we prove that CC2FLP is almost equivalent to DC2FLP in trees, and develop a quadratic time exact algorithm based on the edge-splitting algorithm. Finally, we adapt our algorithms to the general case of \(\mathcal {D} \subseteq V\) and \(\mathcal {F} \subseteq \mathcal {P}(T)\).  相似文献   

20.
This paper considers the channel assignment problem in mobile communications systems. Suppose there are many base stations in an area, each of which demands a number of channels to transmit signals. The channels assigned to the same base station must be separated in some extension, and two channels assigned to two different stations that are within a distance must be separated in some other extension according to the distance between the two stations. The aim is to assign channels to stations so that the interference is controlled within an acceptable level and the spectrum of channels used is minimized. This channel assignment problem can be modeled as the multiple t-separated \(L(j_1,j_2,\ldots ,j_m)\)-labeling of the interference graph. In this paper, we consider the case when all base stations demand the same number of channels. This case is referred as n-fold t-separated \(L(j_1,j_2,\ldots ,j_m)\)-labeling of a graph. This paper first investigates the basic properties of n-fold t-separated \(L(j_1,j_2,\ldots ,j_m)\)-labelings of graphs. And then it focuses on the special case when \(m=1\). The optimal n-fold t-separated L(j)-labelings of all complete graphs and almost all cycles are constructed. As a consequence, the optimal n-fold t-separated \(L(j_1,j_2,\ldots ,j_m)\)-labelings of the triangular lattice and the square lattice are obtained for the case \(j_1=j_2=\cdots =j_m\). This provides an optimal solution to the corresponding channel assignment problems with interference graphs being the triangular lattice and the square lattice, in which each base station demands a set of n channels that are t-separated and channels from two different stations at distance at most m must be \(j_1\)-separated. We also study a variation of n-fold t-separated \(L(j_1,j_2,\ldots ,j_m)\)-labeling, namely, n-fold t-separated consecutive \(L(j_1,j_2,\ldots ,j_m)\)-labeling. And present the optimal n-fold t-separated consecutive L(j)-labelings of all complete graphs and cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号