首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Econometric Reviews》2013,32(3):229-257
Abstract

We obtain semiparametric efficiency bounds for estimation of a location parameter in a time series model where the innovations are stationary and ergodic conditionally symmetric martingale differences but otherwise possess general dependence and distributions of unknown form. We then describe an iterative estimator that achieves this bound when the conditional density functions of the sample are known. Finally, we develop a “semi-adaptive” estimator that achieves the bound when these densities are unknown by the investigator. This estimator employs nonparametric kernel estimates of the densities. Monte Carlo results are reported.  相似文献   

2.
Abstract. We propose an information‐theoretic approach to approximate asymptotic distributions of statistics using the maximum entropy (ME) densities. Conventional ME densities are typically defined on a bounded support. For distributions defined on unbounded supports, we use an asymptotically negligible dampening function for the ME approximation such that it is well defined on the real line. We establish order n?1 asymptotic equivalence between the proposed method and the classical Edgeworth approximation for general statistics that are smooth functions of sample means. Numerical examples are provided to demonstrate the efficacy of the proposed method.  相似文献   

3.
Abstract

In this work, we propose beta prime kernel estimator for estimation of a probability density functions defined with nonnegative support. For the proposed estimator, beta prime probability density function used as a kernel. It is free of boundary bias and nonnegative with a natural varying shape. We obtained the optimal rate of convergence for the mean squared error (MSE) and the mean integrated squared error (MISE). Also, we use adaptive Bayesian bandwidth selection method with Lindley approximation for heavy tailed distributions and compare its performance with the global least squares cross-validation bandwidth selection method. Simulation studies are performed to evaluate the average integrated squared error (ISE) of the proposed kernel estimator against some asymmetric competitors using Monte Carlo simulations. Moreover, real data sets are presented to illustrate the findings.  相似文献   

4.
Abstract. We consider the problem of efficiently estimating multivariate densities and their modes for moderate dimensions and an abundance of data. We propose polynomial histograms to solve this estimation problem. We present first‐ and second‐order polynomial histogram estimators for a general d‐dimensional setting. Our theoretical results include pointwise bias and variance of these estimators, their asymptotic mean integrated square error (AMISE), and optimal binwidth. The asymptotic performance of the first‐order estimator matches that of the kernel density estimator, while the second order has the faster rate of O(n?6/(d+6)). For a bivariate normal setting, we present explicit expressions for the AMISE constants which show the much larger binwidths of the second order estimator and hence also more efficient computations of multivariate densities. We apply polynomial histogram estimators to real data from biotechnology and find the number and location of modes in such data.  相似文献   

5.
When the error terms are autocorrelated, the conventional t-tests for individual regression coefficients mislead us to over-rejection of the null hypothesis. We examine, by Monte Carlo experiments, the small sample properties of the unrestricted estimator of ρ and of the estimator of ρ restricted by the null hypothesis. We compare the small sample properties of the Wald, likelihood ratio and Lagrange multiplier test statistics for individual regression coefficients. It is shown that when the null hypothesis is true, the unrestricted estimator of ρ is biased. It is also shown that the Lagrange multiplier test using the maximum likelihood estimator of ρ performs better than the Wald and likelihood ratio tests.  相似文献   

6.
ABSTRACT

The non parametric approach is considered to estimate probability density function (Pdf) which is supported on(0, ∞). This approach is the inverse gamma kernel. We show that it has same properties as gamma, reciprocal inverse Gaussian, and inverse Gaussian kernels such that it is free of the boundary bias, non negative, and it achieves the optimal rate of convergence for the mean integrated squared error. Also some properties of the estimator were established such as bias and variance. Comparison of the bandwidth selection methods for inverse gamma kernel estimation of Pdf is done.  相似文献   

7.
ABSTRACT

The likelihood function of a Gaussian hidden Markov model is unbounded, which is why the maximum likelihood estimator (MLE) is not consistent. A penalized MLE is introduced along with a rigorous consistency proof.  相似文献   

8.
It is well known that the inverse-square-root rule of Abramson (1982) for the bandwidth h of a variable-kernel density estimator achieves a reduction in bias from the fixed-bandwidth estimator, even when a nonnegative kernel is used. Without some form of “clipping” device similar to that of Abramson, the asymptotic bias can be much greater than O(h4) for target densities like the normal (Terrell and Scott 1992) or even compactly supported densities. However, Abramson used a nonsmooth clipping procedure intended for pointwise estimation. Instead, we propose a smoothly clipped estimator and establish a globally valid, uniformly convergent bias expansion for densities with uniformly continuous fourth derivatives. The main result extends Hall's (1990) formula (see also Terrell and Scott 1992) to several dimensions, and actually to a very general class of estimators. By allowing a clipping parameter to vary with the bandwidth, the usual O(h4) bias expression holds uniformly on any set where the target density is bounded away from zero.  相似文献   

9.
Abstract

In this article we propose an automatic selection of the bandwidth of the recursive kernel density estimators for spatial data defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and the stepsize which minimize the MWISE (Mean Weighted Integrated Squared Error), the recursive estimator will be quite similar to the nonrecursive one in terms of estimation error and much better in terms of computational costs. In addition, we obtain the central limit theorem for the nonparametric recursive density estimator under some mild conditions.  相似文献   

10.
Abstract

In this paper, the drift parameter estimation for the one-dimensional skew Ornstein-Uhlenbeck process is considered. We derived the moment estimator in terms of the sample moments and invariant density. Then, we proved the strong consistency and asymptotic normality. Finally, some numerical experiments are presented to show the effect of the moment estimator.  相似文献   

11.
Abstract. The problem of estimating an unknown density function has been widely studied. In this article, we present a convolution estimator for the density of the responses in a nonlinear heterogenous regression model. The rate of convergence for the mean square error of the convolution estimator is of order n ?1 under certain regularity conditions. This is faster than the rate for the kernel density method. We derive explicit expressions for the asymptotic variance and the bias of the new estimator, and further a data‐driven bandwidth selector is proposed. We conduct simulation experiments to check the finite sample properties, and the convolution estimator performs substantially better than the kernel density estimator for well‐behaved noise densities.  相似文献   

12.
Superefficiency of a projection density estimator The author constructs a projection density estimator with a data‐driven truncation index. This estimator reaches the superoptimal rates 1/n in mean integrated square error and {In ln(n/n}1/2 in uniform almost sure convergence over a given subspace which is dense in the class of all possible densities; the rate of the estimator is quasi‐optimal everywhere else. The subspace in question may be chosen a priori by the statistician.  相似文献   

13.
ABSTRACT

Squared error loss remains the most commonly used loss function for constructing a Bayes estimator of the parameter of interest. However, it can lead to suboptimal solutions when a parameter is defined on a restricted space. It can also be an inappropriate choice in the context when an extreme overestimation and/or underestimation results in severe consequences and a more conservative estimator is preferred. We advocate a class of loss functions for parameters defined on restricted spaces which infinitely penalize boundary decisions like the squared error loss does on the real line. We also recall several properties of loss functions such as symmetry, convexity and invariance. We propose generalizations of the squared error loss function for parameters defined on the positive real line and on an interval. We provide explicit solutions for corresponding Bayes estimators and discuss multivariate extensions. Four well-known Bayesian estimation problems are used to demonstrate inferential benefits the novel Bayes estimators can provide in the context of restricted estimation.  相似文献   

14.
Abstract

Minimum distance estimation on the linear regression model with independent errors is known to yield an efficient and robust estimator. We extend the method to the model with strong mixing errors and obtain an estimator of the vector of the regression parameters. The goal of this article is to demonstrate the proposed estimator still retains efficiency and robustness. To that end, this article investigates asymptotic distributional properties of the proposed estimator and compares it with other estimators. The efficiency and the robustness of the proposed estimator are empirically shown, and its superiority over the other estimators is established.  相似文献   

15.
The standard approach to non-parametric bivariate density estimation is to use a kernel density estimator. Practical performance of this estimator is hindered by the fact that the estimator is not adaptive (in the sense that the level of smoothing is not sensitive to local properties of the density). In this paper a simple, automatic and adaptive bivariate density estimator is proposed based on the estimation of marginal and conditional densities. Asymptotic properties of the estimator are examined, and guidance to practical application of the method is given. Application to two examples illustrates the usefulness of the estimator as an exploratory tool, particularly in situations where the local behaviour of the density varies widely. The proposed estimator is also appropriate for use as a pilot estimate for an adaptive kernel estimate, since it is relatively inexpensive to calculate.  相似文献   

16.
Abstract.  A new semiparametric method for density deconvolution is proposed, based on a model in which only the ratio of the unconvoluted to convoluted densities is specified parametrically. Deconvolution results from reweighting the terms in a standard kernel density estimator, where the weights are defined by the parametric density ratio. We propose that in practice, the density ratio be modelled on the log-scale as a cubic spline with a fixed number of knots. Parameter estimation is based on maximization of a type of semiparametric likelihood. The resulting asymptotic properties for our deconvolution estimator mirror the convergence rates in standard density estimation without measurement error when attention is restricted to our semiparametric class of densities. Furthermore, numerical studies indicate that for practical sample sizes our weighted kernel estimator can provide better results than the classical non-parametric kernel estimator for a range of densities outside the specified semiparametric class.  相似文献   

17.
We regard the simple linear calibration problem where only the response y of the regression line y = β0 + β1 t is observed with errors. The experimental conditions t are observed without error. For the errors of the observations y we assume that there may be some gross errors providing outlying observations. This situation can be modeled by a conditionally contaminated regression model. In this model the classical calibration estimator based on the least squares estimator has an unbounded asymptotic bias. Therefore we introduce calibration estimators based on robust one-step-M-estimators which have a bounded asymptotic bias. For this class of estimators we discuss two problems: The optimal estimators and their corresponding optimal designs. We derive the locally optimal solutions and show that the maximin efficient designs for non-robust estimation and robust estimation coincide.  相似文献   

18.
We study the heteroscedastic deconvolution problem when random noises have compactly supported densities. In this context, the Fourier transforms of the densities can vanish on the real line. We propose a truncated type of estimator for target density and derive the convergence rate of the mean L1-error uniformly over a class of target densities. A lower bound for the mean L1-error is also established. Some simulations will be given to illustrate the performance of the proposed estimator.  相似文献   

19.
Abstract

We propose and study properties of an estimator of the forecast error variance decomposition in the local projections framework. We find for empirically relevant sample sizes that, after being bias-corrected with bootstrap, our estimator performs well in simulations. We also illustrate the workings of our estimator empirically for monetary policy and productivity shocks. KEYWORDS: Forecast error variance decomposition; Local projections.  相似文献   

20.
The estimation of a multivariate function from a stationary m-dependent process is investigated, with a special focus on the case where m is large or unbounded. We develop an adaptive estimator based on wavelet methods. Under flexible assumptions on the nonparametric model, we prove the good performances of our estimator by determining sharp rates of convergence under two kinds of errors: the pointwise mean squared error and the mean integrated squared error. We illustrate our theoretical result by considering the multivariate density estimation problem, the derivatives density estimation problem, the density estimation problem in a GARCH-type model and the multivariate regression function estimation problem. The performance of proposed estimator has been shown by a numerical study for a simulated and real data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号