首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let Fk:m be the cumulative disribution function of the kth order statistic in a sample of size n from a distribution

F(x) with density function f(x).The primary objective of this paper is to show that Fk+1mis IHR(increasing hazard rate) if Fkm(x)is IHH and that Fk-1:n(x)is DHR.(decreasing hazard rate) if Fkm(x) is DHR.  相似文献   

2.
This article addresses the problem of testing the null hypothesis H0 that a random sample of size n is from a distribution with the completely specified continuous cumulative distribution function Fn(x). Kolmogorov-type tests for H0 are based on the statistics C+ n = Sup[Fn(x)?F0(x)] and C? n=Sup[F0(x)?Fn(x)], where Fn(x) is an empirical distribution function. Let F(x) be the true cumulative distribution function, and consider the ordered alternative H1: F(x)≥F0(x) for all x and with strict inequality for some x. Although it is natural to reject H0 and accept H1 if C + n is large, this article shows that a test that is superior in some ways rejects F0 and accepts H1 if Cmdash n is small. Properties of the two tests are compared based on theoretical results and simulated results.  相似文献   

3.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

4.
This article studies the asymptotic properties of the random weighted empirical distribution function of independent random variables. Suppose X1, X2, ???, Xn is a sequence of independent random variables, and this sequence is not required to be identically distributed. Denote the empirical distribution function of the sequence by Fn(x). Based on the random weighting method and Fn(x), the random weighted empirical distribution function Hn(x) is constructed and the asymptotic properties of Hn are discussed. Under weak conditions, the Glivenko–Cantelli theorem and the central limit theorem for the random weighted empirical distribution function are obtained. The obtained results have also been applied to study the distribution functions of random errors of multiple sensors.  相似文献   

5.
Let Xn, n ⩾ 1 be a sequence of ϕ-mixing random variables having a smooth common distribution function F. The smoothed empirical distribution function is obtained by integrating a kernel type density estimator. In this paper we provide necessary and sufficient conditions for the central limit theorem to hold for smoothed empirical distribution functions and smoothed sample quantiles. Also, necessary and sufficient conditions are given for weak convergence of the smoothed empirical process and the smoothed uniform quantile process.  相似文献   

6.
Consider a linear function of order statistics (“L-estimate”) which can be expressed as a statistical function T(Fn) based on the sample cumulative distribution function Fn. Let T*(Fn) be the corresponding jackknifed version of T(Fn), and let V2n be the jackknife estimate of the asymptotic variance of n 1/2T(Fn) or n 1/2T*(Fn). In this paper, we provide a Berry-Esséen rate of the normal approximation for a Studentized jackknife L-estimate n1/2[T*(Fn) - T(F)]/Vn, where T(F) is the basic functional associated with the L-estimate.  相似文献   

7.
Let Xi, 1 ≤ in, be independent identically distributed random variables with a common distribution function F, and let G be a smooth distribution function. We derive the limit distribution of α(Fn, G) - α(F, G)}, where Fn is the empirical distribution function based on X1,…,Xn and α is a Kolmogorov-Lévy-type metric between distribution functions. For α ≤ 0 and two distribution functions F and G the metric pα is given by pα(F, G) = inf {? ≤ 0: G(x - α?) - ? F(x)G(x + α?) + ? for all x ?}.  相似文献   

8.
ABSTRACT

This article considers the estimation of a distribution function FX(x) based on a random sample X1, X2, …, Xn when the sample is suspected to come from a close-by distribution F0(x). The new estimators, namely the preliminary test (PTE) and Stein-type estimator (SE) are defined and compared with the “empirical distribution function” (edf) under local departure. In this case, we show that Stein-type estimators are superior to edf and PTE is superior to edf when it is close to F0(x). As a by-product similar estimators are proposed for population quantiles.  相似文献   

9.
Let X1,… Xm be a random sample of m failure times under normal conditions with the underlying distribution F(x) and Y1,…,Yn a random sample of n failure times under accelerated condititons with underlying distribution G(x);G(x)=1?[1?F(x)]θ with θ being the unknown parameter under study.Define:Uij=1 otherwise.The joint distribution of ijdoes not involve the distribution F and thus can be used to estimate the acceleration parameter θ.The second approach for estimating θ is to use the ranks of the Y-observations in the combined X- and Y-samples.In this paper we establish that the rank of the Y-observations in the pooled sample form a sufficient statistic for the information contained in the Uii 's about the parameter θ and that there does not exist an unbiassed estimator for the parameter θ.We also construct several estimators and confidence interavals for the parameter θ.  相似文献   

10.
Let X be a non-negative random variable with cumulative probability distribution function F. Suppse X1, X2, ..., Xn be a random sample of size n from F and Xi,n is the i-th smallest order statistics. We define the standardized spacings Dr,n=(n-r) (Xr+1,n-Xr,n), 1≤r≤n, with DO,n=nX1,n and Dn,n=0. Characterizations of the exponential distribution are given by considering the expectation and hazard rates of Dr,n.  相似文献   

11.
In this paper, we will investigate the nonparametric estimation of the distribution function F of an absolutely continuous random variable. Two methods are analyzed: the first one based on the empirical distribution function, expressed in terms of i.i.d. lattice random variables and, secondly, the kernel method, which involves nonlattice random vectors dependent on the sample size n; this latter procedure produces a smooth distribution estimator that will be explicitly corrected to reduce the effect of bias or variance. For both methods, the non-Studentized and Studentized statistics are considered as well as their bootstrap counterparts and asymptotic expansions are constructed to approximate their distribution functions via the Edgeworth expansion techniques. On this basis, we will obtain confidence intervals for F(x) and state the coverage error order achieved in each case.  相似文献   

12.
A sequence {Xn, n≥1} of independent and identically distributed random variables with continuous cumulative distribution function F(x) is considered. Xj is a record value of this sequence if Xj>max {X1, X2, ..., Xj?1}. We define L(n)=min {j|j>L(n?1), Xj>XL(n?1)}, with L(0)=1. Let Zn,m=XL(n)?XL(m), n>m≥0. Some characterizations of the exponential distribution are considered in terms of Zn,m and XL(m).  相似文献   

13.
We study the non-parametric estimation of a continuous distribution function F based on the partially rank-ordered set (PROS) sampling design. A PROS sampling design first selects a random sample from the underlying population and uses judgement ranking to rank them into partially ordered sets, without measuring the variable of interest. The final measurements are then obtained from one of the partially ordered sets. Considering an imperfect PROS sampling procedure, we first develop the empirical distribution function (EDF) estimator of F and study its theoretical properties. Then, we consider the problem of estimating F, where the underlying distribution is assumed to be symmetric. We also find a unique admissible estimator of F within the class of nondecreasing step functions with jumps at observed values and show the inadmissibility of the EDF. In addition, we introduce a smooth estimator of F and discuss its theoretical properties. Finally, we expand on various numerical illustrations of our results via several simulation studies and a real data application and show the advantages of PROS estimates over their counterparts under the simple random and ranked set sampling designs.  相似文献   

14.
Let Xl,…,Xn (Yl,…,Ym) be a random sample from an absolutely continuous distribution with distribution function F(G).A class of distribution-free tests based on U-statistics is proposed for testing the equality of F and G against the alternative that X's are more dispersed then Y's. Let 2 ? C ? n and 2 ? d ? m be two fixed integers. Let ?c,d(Xil,…,Xic ; Yjl,…,Xjd)=1(-1)when max as well as min of {Xil,…,Xic ; Yjl,…,Yjd } are some Xi's (Yj's)and zero oterwise. Let Sc,d be the U-statistic corresponding to ?c,d.In case of equal sample sizes, S22 is equivalent to Mood's Statistic.Large values of Sc,d are significant and these tests are quite efficient  相似文献   

15.
Let {Sn, n ≥ 1} be a sequence of partial sums of independent and identically distributed non-negative random variables with a common distribution function F. Let F belong to the domain of attraction of a stable law with exponent α, 0 < α < 1. Suppose H(t) = ? N(t), t ? 0, where N(t) = max(n : Sn ≥ t). Under some additional assumptions on F, the difference between H(t) and its asymptotic value as t → ∞ is estimated.  相似文献   

16.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

17.
Suppose X1, X2, ..., Xm is a random sample of size m from a population with probability density function f(x), x>0 and let X1,m<...m,m be the corresponding order statistics. We assume m as an integer valued random variable with P(m=k)=p(1?p)k?1, k=1, 2, ... and 0 and n X1,n for fixed n characterizes the exponential distribution. In this paper we prove that under the assumption of monotone hazard rate the identical distribution of and (n?r+1) (Xr,n?Xr?1,n) for some fixed r and n with 1≤r≤n, n≥2, X0,n=0, characterizes the exponential distribution. Under the assumption of monotone hazard rate the conjecture of Kakosyan, Klebanov and Melamed follows from the above result with r=1.  相似文献   

18.
Fix r ≥ 1, and let {Mnr} be the rth largest of {X1,X2,…Xn}, where X1,X2,… is a sequence of i.i.d. random variables with distribution function F. It is proved that P[Mnr ≤ un i.o.] = 0 or 1 according as the series Σn=3Fn(un)(log log n)r/n converges or diverges, for any real sequence {un} such that n{1 -F(un)} is nondecreasing and divergent. This generalizes a result of Bamdorff-Nielsen (1961) in the case r = 1.  相似文献   

19.
Given a number of record values from independent and identically distributed random variables with a continuous distribution function F, our aim is to predict future record values under suitable assumptions on the tail of F. In this paper, we are primarily concerned with finding reasonable tolerance regions for future record values. Two methods are proposed. The first one deals with the case where we observe only record values. The second one makes use of the information brought by the complete sample.  相似文献   

20.
Let μ be a positive measure concentrated on R+ generating a natural exponential family (NEF) F with quadratic variance function VF(m), m being the mean parameter of F. It is shown that v(dx) = (γ+x)μ(γ ≥ 0) (γ ≥ 0) generates a NEF G whose variance function is of the form l(m)Δ+cΔ(m), where l(m) is an affine function of m, Δ(m) is a polynomial in m (the mean of G) of degree 2, and c is a constant. The family G turns out to be a finite mixture of F and its length-biased family. We also examine the cases when F has cubic variance function and show that for suitable choices of γ the family G has variance function of the form P(m) + Q(m)m where P, Q are polynomials in m of degree m2 while Δ is an affine function of m. Finally we extend the idea to two dimensions by considering a bivariate Poisson and bivariate gamma mixture distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号