首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article extends the biased minimum x2 rule to the unequal covariance matrix case and to the case of several populations, The biased procedure is shown to improve the performance of the commonly used classification procedures. Results of sampling experiments over a broad range of conditions are provided to demonstrate this improvement.  相似文献   

2.
This article extends the work of DiPillo (1976) on the Biased Minimum x2 Rule. The optimum value of k (the biasing factor) Is determined and the true probability of misclassification is found. The proportion improvements reported in the 1976 paper are shown to be conservative. Some suggestions for algorithms to determine the optimal value of k are presented.  相似文献   

3.
In this study, a new per-field classification method is proposed for supervised classification of remotely sensed multispectral image data of an agricultural area using Gaussian mixture discriminant analysis (MDA). For the proposed per-field classification method, multivariate Gaussian mixture models constructed for control and test fields can have fixed or different number of components and each component can have different or common covariance matrix structure. The discrimination function and the decision rule of this method are established according to the average Bhattacharyya distance and the minimum values of the average Bhattacharyya distances, respectively. The proposed per-field classification method is analyzed for different structures of a covariance matrix with fixed and different number of components. Also, we classify the remotely sensed multispectral image data using the per-pixel classification method based on Gaussian MDA.  相似文献   

4.
The estimator ? for the ratio of densities based on grade transformation is introduced. Under certain conditions the strong uniform consistency of ? is proved and its asymptotic law is determined. The result is applied to study the behaviour of divergence curve used in discriminant analysis.  相似文献   

5.
We have compared the efficacy of five imputation algorithms readily available in SAS for the quadratic discriminant function. Here, we have generated several different parametric-configuration training data with missing data, including monotone missing-at-random observations, and used a Monte Carlo simulation to examine the expected probabilities of misclassification for the two-class quadratic statistical discrimination problem under five different imputation methods. Specifically, we have compared the efficacy of the complete observation-only method and the mean substitution, regression, predictive mean matching, propensity score, and Markov Chain Monte Carlo (MCMC) imputation methods. We found that the MCMC and propensity score multiple imputation approaches are, in general, superior to the other imputation methods for the configurations and training-sample sizes we considered.  相似文献   

6.
The purpose of this study was to predict placement and nonplacement outcomes for mildly handicapped three through five year old children given knowledge of developmental screening test data. Discrete discriminant analysis (Anderson, 1951; Cochran & Hopkins, 1961; Goldstein & Dillon, 1978) was used to classify children into either a placement or nonplacement group using developmental information retrieved from longitudinal Child Find records (1982-89). These records were located at the Florida Diagnostic and Learning Resource System (FDLRS) in Sarasota, Florida and provided usable data for 602 children. The developmental variables included performance on screening test activities from the Comprehensive Identification Process (Zehrbach, 1975), and consisted of: (a) gross motor skills, (b) expressive language skills, and (c) social-emotional skills. These three dichotomously scored developmental variables generated eight mutually exclusive and exhaustive combinations of screening data. Combined with one of three different types of cost-of-misclassification functions, each child in a random cross-validation sample of 100 was classified into one of the two outcome groups minimizing the expected cost of misclassification based on the remaining 502 children. For each cost function designed by the researchers a comparison was made between classifications from the discrete discriminant analysis procedure and actual placement outcomes for the 100 children. A logit analysis and a standard discriminant analysis were likewise conducted using the 502 children and compared with results of the discrete discriminant analysis for selected cost functions.  相似文献   

7.
This article is concerned with feature screening for the ultrahigh dimensional discriminant analysis. A variance ratio screening method is proposed and the sure screening property of this screening procedure is proved. The proposed method has some additional desirable features. First, it is model-free which does not require specific discriminant model and can be directly applied to the multi-categories situation. Second, it can effectively screen main effects and interaction effects simultaneously. Third, it is relatively inexpensive in computational cost because of the simple structure. The finite sample properties are performed through the Monte Carlo simulation studies and two real-data analyses.  相似文献   

8.
Several mathematical programming approaches to the classification problem in discriminant analysis have recently been introduced. This paper empirically compares these newly introduced classification techniques with Fisher's linear discriminant analysis (FLDA), quadratic discriminant analysis (QDA), logit analysis, and several rank-based procedures for a variety of symmetric and skewed distributions. The percent of correctly classified observations by each procedure in a holdout sample indicate that while under some experimental conditions the linear programming approaches compete well with the classical procedures, overall, however, their performance lags behind that of the classical procedures.  相似文献   

9.
We propose a hybrid two-group classification method that integrates linear discriminant analysis, a polynomial expansion of the basis (or variable space), and a genetic algorithm with multiple crossover operations to select variables from the expanded basis. Using new product launch data from the biochemical industry, we found that the proposed algorithm offers mean percentage decreases in the misclassification error rate of 50%, 56%, 59%, 77%, and 78% in comparison to a support vector machine, artificial neural network, quadratic discriminant analysis, linear discriminant analysis, and logistic regression, respectively. These improvements correspond to annual cost savings of $4.40–$25.73 million.  相似文献   

10.
ABSTRACT

Fisher's linear discriminant analysis (FLDA) is known as a method to find a discriminative feature space for multi-class classification. As a theory of extending FLDA to an ultimate nonlinear form, optimal nonlinear discriminant analysis (ONDA) has been proposed. ONDA indicates that the best theoretical nonlinear map for maximizing the Fisher's discriminant criterion is formulated by using the Bayesian a posterior probabilities. In addition, the theory proves that FLDA is equivalent to ONDA when the Bayesian a posterior probabilities are approximated by linear regression (LR). Due to some limitations of the linear model, there is room to modify FLDA by using stronger approximation/estimation methods. For the purpose of probability estimation, multi-nominal logistic regression (MLR) is more suitable than LR. Along this line, in this paper, we develop a nonlinear discriminant analysis (NDA) in which the posterior probabilities in ONDA are estimated by MLR. In addition, in this paper, we develop a way to introduce sparseness into discriminant analysis. By applying L1 or L2 regularization to LR or MLR, we can incorporate sparseness in FLDA and our NDA to increase generalization performance. The performance of these methods is evaluated by benchmark experiments using last_exam17 standard datasets and a face classification experiment.  相似文献   

11.
The purpose of this paper is to examine the multiple group (>2) discrimination problem in which the group sizes are unequal and the variables used in the classification are correlated with skewed distributions. Using statistical simulation based on data from a clinical study, we compare the performances, in terms of misclassification rates, of nine statistical discrimination methods. These methods are linear and quadratic discriminant analysis applied to untransformed data, rank transformed data, and inverse normal scores data, as well as fixed kernel discriminant analysis, variable kernel discriminant analysis, and variable kernel discriminant analysis applied to inverse normal scores data. It is found that the parametric methods with transformed data generally outperform the other methods, and the parametric methods applied to inverse normal scores usually outperform the parametric methods applied to rank transformed data. Although the kernel methods often have very biased estimates, the variable kernel method applied to inverse normal scores data provides considerable improvement in terms of total nonerror rate.  相似文献   

12.
Techniques of credit scoring have been developed these last years in order to reduce the risk taken by banks and financial institutions in the loans that they are granting. Credit Scoring is a classification problem of individuals in one of the two following groups: defaulting borrowers or non-defaulting borrowers. The aim of this paper is to propose a new method of discrimination when the dependent variable is categorical and when a large number of categorical explanatory variables are retained. This method, Categorical Multiblock Linear Discriminant Analysis, computes components which take into account both relationships between explanatory categorical variables and canonical correlation between each explanatory categorical variable and the dependent variable. A comparison with three other techniques and an application on credit scoring data are provided.  相似文献   

13.
A commonly used procedure for reduction of the number of variables in linear discriminant analysis is the stepwise method for variable selection. Although often criticized, when used carefully, this method can be a useful prelude to a further analysis. The contribution of a variable to the discriminatory power of the model is usually measured by the maximum likelihood ratio criterion, referred to as Wilks’ lambda. It is well known that the Wilks’ lambda statistic is extremely sensitive to the influence of outliers. In this work a robust version of the Wilks’ lambda statistic will be constructed based on the Minimum Covariance Discriminant (MCD) estimator and its reweighed version which has a higher efficiency. Taking advantage of the availability of a fast algorithm for computing the MCD a simulation study will be done to evaluate the performance of this statistic. The presentation of material in this article does not imply the expression of any opinion whatsoever on the part of Austro Control GmbH and is the sole responsibility of the authors.  相似文献   

14.
The empirical influence function for Mahalanobis distance and for misclassification rates are presented for discriminant analysis with two multivariate normal populations, following Campbell (1978). Conclusions about the effects of outliers from the empirical influence function are contrasted with exact calculations for four simple cases. These cases demonstrate that the higher-order terms discarded in deriving the empirical influence function can be important in practical problems.  相似文献   

15.
We introduce a technique for extending the classical method of linear discriminant analysis (LDA) to data sets where the predictor variables are curves or functions. This procedure, which we call functional linear discriminant analysis ( FLDA ), is particularly useful when only fragments of the curves are observed. All the techniques associated with LDA can be extended for use with FLDA. In particular FLDA can be used to produce classifications on new (test) curves, give an estimate of the discriminant function between classes and provide a one- or two-dimensional pictorial representation of a set of curves. We also extend this procedure to provide generalizations of quadratic and regularized discriminant analysis.  相似文献   

16.
The influence of observations in estimating the misclassification probability in multiple discriminant analysis is studied using the common omission approach. An empirical influence function for the misclassification probability is also derived, It can give a very good approximation to the omission approach, but the computational load is much reduced, Various extensions of the measures are suggested. The proposed measures are applied to the famous Iris data set. The same three observations are identified as having the most influence under different measures.  相似文献   

17.
18.
We examined the impact of different methods for replacing missing data in discriminant analyses conducted on randomly generated samples from multivariate normal and non-normal distributions. The probabilities of correct classification were obtained for these discriminant analyses before and after randomly deleting data as well as after deleted data were replaced using: (1) variable means, (2) principal component projections, and (3) the EM algorithm. Populations compared were: (1) multivariate normal with covariance matrices ∑1=∑2, (2) multivariate normal with ∑1≠∑2 and (3) multivariate non-normal with ∑1=∑2. Differences in the probabilities of correct classification were most evident for populations with small Mahalanobis distances or high proportions of missing data. The three replacement methods performed similarly but all were better than non - replacement.  相似文献   

19.
Classification of gene expression microarray data is important in the diagnosis of diseases such as cancer, but often the analysis of microarray data presents difficult challenges because the gene expression dimension is typically much larger than the sample size. Consequently, classification methods for microarray data often rely on regularization techniques to stabilize the classifier for improved classification performance. In particular, numerous regularization techniques, such as covariance-matrix regularization, are available, which, in practice, lead to a difficult choice of regularization methods. In this paper, we compare the classification performance of five covariance-matrix regularization methods applied to the linear discriminant function using two simulated high-dimensional data sets and five well-known, high-dimensional microarray data sets. In our simulation study, we found the minimum distance empirical Bayes method reported in Srivastava and Kubokawa [Comparison of discrimination methods for high dimensional data, J. Japan Statist. Soc. 37(1) (2007), pp. 123–134], and the new linear discriminant analysis reported in Thomaz, Kitani, and Gillies [A Maximum Uncertainty LDA-based approach for Limited Sample Size problems – with application to Face Recognition, J. Braz. Comput. Soc. 12(1) (2006), pp. 1–12], to perform consistently well and often outperform three other prominent regularization methods. Finally, we conclude with some recommendations for practitioners.  相似文献   

20.
The Linear Discriminant Rule (LD) is theoretically justified for use in classification when the population within-groups covariance matrices are equal, something rarely known in practice. As an alternative, the Quadratic Discriminant Rule (QD) avoids assuming equal covariance matrices, but requires the estimation of a large number of parameters. Hence, the performance of QD may be poor if the training set sizes are small or moderate. In fact, simulation studies have shown that in the two-groups case LD often outperforms QD for small training sets even when the within -groups covariance matrices differ substantially. The present article shows this to be true when there are more than two groups, as well. Thus, it would seem reasonable and useful to develop a data-based method of classification that, in effect, represents a compromise between QD and LD. In this article we develop such a method based on an empirical Bayes formulation in which the within-groups covariance matrices are assumed to be outcomes of a common prior distribution whose parameters are estimated from the data. Two classification rules are developed under this framework and, through the use of extensive simulations, are compared to existing methods when the number of groups is moderate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号