共查询到20条相似文献,搜索用时 13 毫秒
1.
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the dataset under consideration involves asymmetric outcomes. In this article, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis for joint location and scale nonlinear models with skew-normal errors, which relax the normality assumption and include the normal one as a special case. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of MCMC methods to simulate samples from the joint posterior distribution. Finally, simulation studies and a real example are used to illustrate the proposed methodology. 相似文献
2.
Minjung Kwak 《Journal of nonparametric statistics》2017,29(3):491-514
In this paper we study estimating the joint conditional distributions of multivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models, we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Empirical copulas combined with time-varying transformation models may allow quite flexible modelling for the joint conditional distributions for multivariate longitudinal data. We derive the asymptotic properties for the copula-based estimators of the joint conditional distribution functions. For illustration we apply our estimation method to an epidemiological study of childhood growth and blood pressure. 相似文献
3.
4.
This article considers the problem of estimating the parameters of Weibull distribution under progressive Type-I interval censoring scheme with beta-binomial removals. Classical as well as the Bayesian procedures for the estimation of unknown model parameters have been developed. The Bayes estimators are obtained under SELF and GELF using MCMC technique. The performance of the estimators, has been discussed in terms of their MSEs. Further, expression for the expected number of total failures has been obtained. A real dataset of the survival times for patients with plasma cell myeloma is used to illustrate the suitability of the proposed methodology. 相似文献
5.
The Weibull distribution is widely used due to its versatility and relative simplicity. In our paper, the non informative priors for the ratio of the scale parameters of two Weibull models are provided. The asymptotic matching of coverage probabilities of Bayesian credible intervals is considered, with the corresponding frequentist coverage probabilities. We developed the various priors for the ratio of two scale parameters using the following matching criteria: quantile matching, matching of distribution function, highest posterior density matching, and inversion of test statistics. One particular prior, which meets all the matching criteria, is found. Next, we derive the reference priors for groups of ordering. We see that all the reference priors satisfy a first-order matching criterion and that the one-at-a-time reference prior is a second-order matching prior. A simulation study is performed and an example given. 相似文献
6.
Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. If misspecification occurs, it may lead to inefficient or biased estimators of parameters in the mean. One of the most commonly used methods for handling the covariance matrix is based on simultaneous modeling of the Cholesky decomposition. Therefore, in this paper, we reparameterize covariance structures in longitudinal data analysis through the modified Cholesky decomposition of itself. Based on this modified Cholesky decomposition, the within-subject covariance matrix is decomposed into a unit lower triangular matrix involving moving average coefficients and a diagonal matrix involving innovation variances, which are modeled as linear functions of covariates. Then, we propose a fully Bayesian inference for joint mean and covariance models based on this decomposition. A computational efficient Markov chain Monte Carlo method which combines the Gibbs sampler and Metropolis–Hastings algorithm is implemented to simultaneously obtain the Bayesian estimates of unknown parameters, as well as their standard deviation estimates. Finally, several simulation studies and a real example are presented to illustrate the proposed methodology. 相似文献
7.
A simultaneous test for the location and scale parameters of the Cauchy distribution is considered based on selected order statistics.. It is shown that optimum spacings that maximise the Pitman ARE of the test coincide with that of the optimum spacings for the estimation problem. 相似文献
8.
A finite mixture model using the multivariate t distribution has been shown as a robust extension of normal mixtures. In this paper, we present a Bayesian approach for inference about parameters of t-mixture models. The specifications of prior distributions are weakly informative to avoid causing nonintegrable posterior distributions. We present two efficient EM-type algorithms for computing the joint posterior mode with the observed data and an incomplete future vector as the sample. Markov chain Monte Carlo sampling schemes are also developed to obtain the target posterior distribution of parameters. The advantages of Bayesian approach over the maximum likelihood method are demonstrated via a set of real data. 相似文献
9.
Christopher S. Withers 《Statistics》2013,47(5):1092-1105
A great deal of inference in statistics is based on making the approximation that a statistic is normally distributed. The error in doing so is generally O(n?1/2), where n is the sample size and can be considered when the distribution of the statistic is heavily biased or skewed. This note shows how one may reduce the error to O(n?(j+1)/2), where j is a given integer. The case considered is when the statistic is the mean of the sample values of a continuous distribution with a scale or location change after the sample has undergone an initial transformation, which may depend on an unknown parameter. The transformation corresponding to Fisher's score function yields an asymptotically efficient procedure. 相似文献
10.
We describe an approach, termed reified analysis, for linking the behaviour of mathematical models with inferences about the physical systems which the models represent. We describe the logical basis for the approach, based on coherent assessment of the implications of deficiencies in the mathematical model. We show how the statistical analysis may be carried out by specifying stochastic relationships between the model that we have, improved versions of the model that we might construct, and the system itself. We illustrate our approach with an example concerning the potential shutdown of the Thermohaline circulation in the Atlantic Ocean. 相似文献
11.
Statistical Methods & Applications - This work aims at jointly modelling longitudinal and survival HIV data by considering the sharing of a set of parameters of interest. For the CD4... 相似文献
12.
Dimitris Rizopoulos Geert Verbeke Emmanuel Lesaffre 《Journal of the Royal Statistical Society. Series B, Statistical methodology》2009,71(3):637-654
Summary. A common objective in longitudinal studies is the joint modelling of a longitudinal response with a time-to-event outcome. Random effects are typically used in the joint modelling framework to explain the interrelationships between these two processes. However, estimation in the presence of random effects involves intractable integrals requiring numerical integration. We propose a new computational approach for fitting such models that is based on the Laplace method for integrals that makes the consideration of high dimensional random-effects structures feasible. Contrary to the standard Laplace approximation, our method requires much fewer repeated measurements per individual to produce reliable results. 相似文献
13.
Azzalini (Scand J Stat 12:171–178, 1985) provided a methodology to introduce skewness in a normal distribution. Using the same method of Azzalini (1985), the skew logistic distribution can be easily obtained by introducing skewness to the logistic distribution. For the skew logistic distribution, the likelihood equations do not provide explicit solutions for the location and scale parameters. We present a simple method of deriving explicit estimators by approximating the likelihood equations appropriately. We examine numerically the bias and variance of these estimators and show that these estimators are as efficient as the maximum likelihood estimators (MLEs). The coverage probabilities of the pivotal quantities (for location and scale parameters) based on asymptotic normality are shown to be unsatisfactory, especially when the effective sample size is small. To improve the coverage probabilities and for constructing confidence intervals, we suggest the use of simulated percentage points. Finally, we present a numerical example to illustrate the methods of inference developed here. 相似文献
14.
Liu-Cang Wu Zhong-Zhan Zhang Deng-Ke Xu 《Journal of Statistical Computation and Simulation》2013,83(7):1266-1278
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the data set under consideration involves asymmetric outcomes. Variable selection is an important issue in all regression analyses, and in this paper, we investigate the simultaneously variable selection in joint location and scale models of the skew-normal distribution. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies. 相似文献
15.
16.
Pham Thi Thu Huong Darfiana Nur Hoa Pham Alan Branford 《Journal of Statistical Computation and Simulation》2018,88(17):3379-3398
Joint models for longitudinal and time-to-event data have been applied in many different fields of statistics and clinical studies. However, the main difficulty these models have to face with is the computational problem. The requirement for numerical integration becomes severe when the dimension of random effects increases. In this paper, a modified two-stage approach has been proposed to estimate the parameters in joint models. In particular, in the first stage, the linear mixed-effects models and best linear unbiased predictorsare applied to estimate parameters in the longitudinal submodel. In the second stage, an approximation of the fully joint log-likelihood is proposed using the estimated the values of these parameters from the longitudinal submodel. Survival parameters are estimated bymaximizing the approximation of the fully joint log-likelihood. Simulation studies show that the approach performs well, especially when the dimension of random effects increases. Finally, we implement this approach on AIDS data. 相似文献
17.
《Journal of Statistical Computation and Simulation》2012,82(10):841-852
The two-parameter generalized exponential (GE) distribution was introduced by Gupta and Kundu [Gupta, R.D. and Kundu, D., 1999, Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41(2), 173–188.]. It was observed that the GE can be used in situations where a skewed distribution for a nonnegative random variable is needed. In this article, the Bayesian estimation and prediction for the GE distribution, using informative priors, have been considered. Importance sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and Metropolis samplers data sets are used to predict the behavior of further observations from the distribution. Two data sets are used to illustrate the Bayesian procedure. 相似文献
18.
19.
The expressions for moments of order statistics from the generalized gamma distribution are derived. Coefficients to get the BLUEs of location and scale parameters in the generalized gamma distribution are computed. Some simple alternative linear unbiased estimates of location and scale parameters are also proposed and their relative efficiencies compared to the BLUEs are studied. 相似文献
20.
Junjiro Ogawa 《Journal of statistical planning and inference》1998,70(2):293-360
We are considering the ABLUE’s – asymptotic best linear unbiased estimators – of the location parameter μ and the scale parameter σ of the population jointly based on a set of selected k sample quantiles, when the population distribution has the density of the formwhere the standardized function f(u) being of a known functional form.A set of selected sample quantiles with a designated spacingor in terms of u=(x−μ)/σwhereare given bywhereAsymptotic distribution of the k sample quantiles when n is very large is given bywhereThe relative efficiency of the joint estimation is given bywhereand κ being independent of the spacing
. The optimal spacing is the spacing which maximizes the relative efficiency η(μ,σ).We will prove the following rather remarkable theorem. Theorem. The optimal spacing for the joint estimation is symmetric, i.e.orif the standardized density f(u) of the population is differentiable infinitely many times and symmetric 相似文献
λi=∫−∞uif(t) dt, i=1,2,…,k
x(n1)<x(n2)<<x(nk),
h(x(n1),x(n2),…,x(nk);μ,σ)=(2πσ2)−k/2[λ1(λ2−λ1)(λk−λk−1)(1−λk)]−1/2nk/2 exp(−nS/2σ2),
fi=f(ui), i=0,1,…,k,k+1,
f0=fk+1=0, λ0=0, λk+1=1.
λi+λk−i+1=1,
ui+uk−i+1=0, i=1,2,…,k,
f(−u)=f(u), f′(−u)=−f′(u).