首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The last decade has seen an explosion of work on the use of mixture models for clustering. The use of the Gaussian mixture model has been common practice, with constraints sometimes imposed upon the component covariance matrices to give families of mixture models. Similar approaches have also been applied, albeit with less fecundity, to classification and discriminant analysis. In this paper, we begin with an introduction to model-based clustering and a succinct account of the state-of-the-art. We then put forth a novel family of mixture models wherein each component is modeled using a multivariate t-distribution with an eigen-decomposed covariance structure. This family, which is largely a t-analogue of the well-known MCLUST family, is known as the tEIGEN family. The efficacy of this family for clustering, classification, and discriminant analysis is illustrated with both real and simulated data. The performance of this family is compared to its Gaussian counterpart on three real data sets.  相似文献   

2.
Model-based classification using latent Gaussian mixture models   总被引:1,自引:0,他引:1  
A novel model-based classification technique is introduced based on parsimonious Gaussian mixture models (PGMMs). PGMMs, which were introduced recently as a model-based clustering technique, arise from a generalization of the mixtures of factor analyzers model and are based on a latent Gaussian mixture model. In this paper, this mixture modelling structure is used for model-based classification and the particular area of application is food authenticity. Model-based classification is performed by jointly modelling data with known and unknown group memberships within a likelihood framework and then estimating parameters, including the unknown group memberships, within an alternating expectation-conditional maximization framework. Model selection is carried out using the Bayesian information criteria and the quality of the maximum a posteriori classifications is summarized using the misclassification rate and the adjusted Rand index. This new model-based classification technique gives excellent classification performance when applied to real food authenticity data on the chemical properties of olive oils from nine areas of Italy.  相似文献   

3.
A model-based classification technique is developed, based on mixtures of multivariate t-factor analyzers. Specifically, two related mixture models are developed and their classification efficacy studied. An AECM algorithm is used for parameter estimation, and convergence of these algorithms is determined using Aitken's acceleration. Two different techniques are proposed for model selection: the BIC and the ICL. Our classification technique is applied to data on red wine samples from Italy and to fatty acid measurements on Italian olive oils. These results are discussed and compared to more established classification techniques; under this comparison, our mixture models give excellent classification performance.  相似文献   

4.
Clustering gene expression time course data is an important problem in bioinformatics because understanding which genes behave similarly can lead to the discovery of important biological information. Statistically, the problem of clustering time course data is a special case of the more general problem of clustering longitudinal data. In this paper, a very general and flexible model-based technique is used to cluster longitudinal data. Mixtures of multivariate t-distributions are utilized, with a linear model for the mean and a modified Cholesky-decomposed covariance structure. Constraints are placed upon the covariance structure, leading to a novel family of mixture models, including parsimonious models. In addition to model-based clustering, these models are also used for model-based classification, i.e., semi-supervised clustering. Parameters, including the component degrees of freedom, are estimated using an expectation-maximization algorithm and two different approaches to model selection are considered. The models are applied to simulated data to illustrate their efficacy; this includes a comparison with their Gaussian analogues—the use of these Gaussian analogues with a linear model for the mean is novel in itself. Our family of multivariate t mixture models is then applied to two real gene expression time course data sets and the results are discussed. We conclude with a summary, suggestions for future work, and a discussion about constraining the degrees of freedom parameter.  相似文献   

5.
Model-based clustering typically involves the development of a family of mixture models and the imposition of these models upon data. The best member of the family is then chosen using some criterion and the associated parameter estimates lead to predicted group memberships, or clusterings. This paper describes the extension of the mixtures of multivariate t-factor analyzers model to include constraints on the degrees of freedom, the factor loadings, and the error variance matrices. The result is a family of six mixture models, including parsimonious models. Parameter estimates for this family of models are derived using an alternating expectation-conditional maximization algorithm and convergence is determined based on Aitken’s acceleration. Model selection is carried out using the Bayesian information criterion (BIC) and the integrated completed likelihood (ICL). This novel family of mixture models is then applied to simulated and real data where clustering performance meets or exceeds that of established model-based clustering methods. The simulation studies include a comparison of the BIC and the ICL as model selection techniques for this novel family of models. Application to simulated data with larger dimensionality is also explored.  相似文献   

6.
Parsimonious Gaussian mixture models   总被引:3,自引:0,他引:3  
Parsimonious Gaussian mixture models are developed using a latent Gaussian model which is closely related to the factor analysis model. These models provide a unified modeling framework which includes the mixtures of probabilistic principal component analyzers and mixtures of factor of analyzers models as special cases. In particular, a class of eight parsimonious Gaussian mixture models which are based on the mixtures of factor analyzers model are introduced and the maximum likelihood estimates for the parameters in these models are found using an AECM algorithm. The class of models includes parsimonious models that have not previously been developed. These models are applied to the analysis of chemical and physical properties of Italian wines and the chemical properties of coffee; the models are shown to give excellent clustering performance.  相似文献   

7.
We propose a mixture of latent variables model for the model-based clustering, classification, and discriminant analysis of data comprising variables with mixed type. This approach is a generalization of latent variable analysis, and model fitting is carried out within the expectation-maximization framework. Our approach is outlined and a simulation study conducted to illustrate the effect of sample size and noise on the standard errors and the recovery probabilities for the number of groups. Our modelling methodology is then applied to two real data sets and their clustering and classification performance is discussed. We conclude with discussion and suggestions for future work.  相似文献   

8.
The inverse Gaussian family (IG) (μ,λ) is a versatile family for modelling nonnegative right-skewed data. In this paper, we propose robust methods for testing homogeneity of the scale-like parameters λi from k independent IG populations subject to order restrictions. Robustness of the procedures is examined for a variety of IG-symmetric alternatives including lognormal and the recently introduced contaminated inverse Gaussian populations. Our study shows that these inference procedures for the inverse Gaussian scale-like parameters and their properties exhibit striking similarities to those of the scale parameters of the normal distribution.  相似文献   

9.
This paper considers a hierarchical Bayesian analysis of regression models using a class of Gaussian scale mixtures. This class provides a robust alternative to the common use of the Gaussian distribution as a prior distribution in particular for estimating the regression function subject to uncertainty about the constraint. For this purpose, we use a family of rectangular screened multivariate scale mixtures of Gaussian distribution as a prior for the regression function, which is flexible enough to reflect the degrees of uncertainty about the functional constraint. Specifically, we propose a hierarchical Bayesian regression model for the constrained regression function with uncertainty on the basis of three stages of a prior hierarchy with Gaussian scale mixtures, referred to as a hierarchical screened scale mixture of Gaussian regression models (HSMGRM). We describe distributional properties of HSMGRM and an efficient Markov chain Monte Carlo algorithm for posterior inference, and apply the proposed model to real applications with constrained regression models subject to uncertainty.  相似文献   

10.
Summary.  An authentic food is one that is what it purports to be. Food processors and consumers need to be assured that, when they pay for a specific product or ingredient, they are receiving exactly what they pay for. Classification methods are an important tool in food authenticity studies where they are used to assign food samples of unknown type to known types. A classification method is developed where the classification rule is estimated by using both the labelled and the unlabelled data, in contrast with many classical methods which use only the labelled data for estimation. This methodology models the data as arising from a Gaussian mixture model with parsimonious covariance structure, as is done in model-based clustering. A missing data formulation of the mixture model is used and the models are fitted by using the EM and classification EM algorithms. The methods are applied to the analysis of spectra of food-stuffs recorded over the visible and near infra-red wavelength range in food authenticity studies. A comparison of the performance of model-based discriminant analysis and the method of classification proposed is given. The classification method proposed is shown to yield very good misclassification rates. The correct classification rate was observed to be as much as 15% higher than the correct classification rate for model-based discriminant analysis.  相似文献   

11.
This paper presents a robust probabilistic mixture model based on the multivariate skew-t-normal distribution, a skew extension of the multivariate Student’s t distribution with more powerful abilities in modelling data whose distribution seriously deviates from normality. The proposed model includes mixtures of normal, t and skew-normal distributions as special cases and provides a flexible alternative to recently proposed skew t mixtures. We develop two analytically tractable EM-type algorithms for computing maximum likelihood estimates of model parameters in which the skewness parameters and degrees of freedom are asymptotically uncorrelated. Standard errors for the parameter estimates can be obtained via a general information-based method. We also present a procedure of merging mixture components to automatically identify the number of clusters by fitting piecewise linear regression to the rescaled entropy plot. The effectiveness and performance of the proposed methodology are illustrated by two real-life examples.  相似文献   

12.
Mixtures of factor analyzers is a useful model-based clustering method which can avoid the curse of dimensionality in high-dimensional clustering. However, this approach is sensitive to both diverse non-normalities of marginal variables and outliers, which are commonly observed in multivariate experiments. We propose mixtures of Gaussian copula factor analyzers (MGCFA) for clustering high-dimensional clustering. This model has two advantages; (1) it allows different marginal distributions to facilitate fitting flexibility of the mixture model, (2) it can avoid the curse of dimensionality by embedding the factor-analytic structure in the component-correlation matrices of the mixture distribution.An EM algorithm is developed for the fitting of MGCFA. The proposed method is free of the curse of dimensionality and allows any parametric marginal distribution which fits best to the data. It is applied to both synthetic data and a microarray gene expression data for clustering and shows its better performance over several existing methods.  相似文献   

13.
Finite mixtures of multivariate skew t (MST) distributions have proven to be useful in modelling heterogeneous data with asymmetric and heavy tail behaviour. Recently, they have been exploited as an effective tool for modelling flow cytometric data. A number of algorithms for the computation of the maximum likelihood (ML) estimates for the model parameters of mixtures of MST distributions have been put forward in recent years. These implementations use various characterizations of the MST distribution, which are similar but not identical. While exact implementation of the expectation-maximization (EM) algorithm can be achieved for ‘restricted’ characterizations of the component skew t-distributions, Monte Carlo (MC) methods have been used to fit the ‘unrestricted’ models. In this paper, we review several recent fitting algorithms for finite mixtures of multivariate skew t-distributions, at the same time clarifying some of the connections between the various existing proposals. In particular, recent results have shown that the EM algorithm can be implemented exactly for faster computation of ML estimates for mixtures with unrestricted MST components. The gain in computational time is effected by noting that the semi-infinite integrals on the E-step of the EM algorithm can be put in the form of moments of the truncated multivariate non-central t-distribution, similar to the restricted case, which subsequently can be expressed in terms of the non-truncated form of the central t-distribution function for which fast algorithms are available. We present comparisons to illustrate the relative performance of the restricted and unrestricted models, and demonstrate the usefulness of the recently proposed methodology for the unrestricted MST mixture, by some applications to three real datasets.  相似文献   

14.
We present a Bayesian analysis of variance component models via simulation. In particular, we study the 2-component hierarchical design model under balanced and unbalanced experiments. Also, we consider 2-factor additive random effect models and mixed models in a cross-classified design. We assess the sensitivity of inference to the choice of prior by a sampling/resampling technique. Finally, attention is given to non-normal error distributions such as the heavy-tailed t distribution.  相似文献   

15.
Several mathematical programming approaches to the classification problem in discriminant analysis have recently been introduced. This paper empirically compares these newly introduced classification techniques with Fisher's linear discriminant analysis (FLDA), quadratic discriminant analysis (QDA), logit analysis, and several rank-based procedures for a variety of symmetric and skewed distributions. The percent of correctly classified observations by each procedure in a holdout sample indicate that while under some experimental conditions the linear programming approaches compete well with the classical procedures, overall, however, their performance lags behind that of the classical procedures.  相似文献   

16.

A procedure to derive optimal discrimination rules is formulated for binary functional classification problems in which the instances available for induction are characterized by random trajectories sampled from different Gaussian processes, depending on the class label. Specifically, these optimal rules are derived as the asymptotic form of the quadratic discriminant for the discretely monitored trajectories in the limit that the set of monitoring points becomes dense in the interval on which the processes are defined. The main goal of this work is to provide a detailed analysis of such optimal rules in the dense monitoring limit, with a particular focus on elucidating the mechanisms by which near-perfect classification arises. In the general case, the quadratic discriminant includes terms that are singular in this limit. If such singularities do not cancel out, one obtains near-perfect classification, which means that the error approaches zero asymptotically, for infinite sample sizes. This singular limit is a consequence of the orthogonality of the probability measures associated with the stochastic processes from which the trajectories are sampled. As a further novel result of this analysis, we formulate rules to determine whether two Gaussian processes are equivalent or mutually singular (orthogonal).

  相似文献   

17.
We discuss the EWMA control chart for a stationary Gaussian process {Xt}. It is proved that in the in-control state the probability of no signal until a fixed time is a nondecreasing function in the autocorrelations of {Xt} provided that they satisfy a certain monotonicity assumption.  相似文献   

18.
The majority of the existing literature on model-based clustering deals with symmetric components. In some cases, especially when dealing with skewed subpopulations, the estimate of the number of groups can be misleading; if symmetric components are assumed we need more than one component to describe an asymmetric group. Existing mixture models, based on multivariate normal distributions and multivariate t distributions, try to fit symmetric distributions, i.e. they fit symmetric clusters. In the present paper, we propose the use of finite mixtures of the normal inverse Gaussian distribution (and its multivariate extensions). Such finite mixture models start from a density that allows for skewness and fat tails, generalize the existing models, are tractable and have desirable properties. We examine both the univariate case, to gain insight, and the multivariate case, which is more useful in real applications. EM type algorithms are described for fitting the models. Real data examples are used to demonstrate the potential of the new model in comparison with existing ones.  相似文献   

19.
In multivariate data analysis, Fisher linear discriminant analysis is useful to optimally separate two classes of observations by finding a linear combination of p variables. Functional data analysis deals with the analysis of continuous functions and thus can be seen as a generalisation of multivariate analysis where the dimension of the analysis space p strives to infinity. Several authors propose methods to perform discriminant analysis in this infinite dimensional space. Here, the methodology is introduced to perform discriminant analysis, not on single infinite dimensional functions, but to find a linear combination of p infinite dimensional continuous functions, providing a set of continuous canonical functions which are optimally separated in the canonical space.KEYWORDS: Functional data analysis, linear discriminant analysis, classification  相似文献   

20.
We propose a family of multivariate heavy-tailed distributions that allow variable marginal amounts of tailweight. The originality comes from introducing multidimensional instead of univariate scale variables for the mixture of scaled Gaussian family of distributions. In contrast to most existing approaches, the derived distributions can account for a variety of shapes and have a simple tractable form with a closed-form probability density function whatever the dimension. We examine a number of properties of these distributions and illustrate them in the particular case of Pearson type VII and t tails. For these latter cases, we provide maximum likelihood estimation of the parameters and illustrate their modelling flexibility on simulated and real data clustering examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号