首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu-Qing Liu  Ping Hu 《Statistics》2013,47(2):363-378
This paper mainly aims to put forward two estimators for the linear combination of fixed effects and random effects, and to investigate their properties in a general mixed linear model. First, we define the notion of a Type-I general ridge predictor (GRP) and obtain two sufficient conditions for a Type-I GRP to be superior over the best linear unbiased predictor (BLUP). Second, we establish the relationship between a Type-I GRP and linear admissibility, which results in the notion of Type-II GRP. We show that a linear predictor is linearly admissible if and only if it is a Type-II GRP. The superiority of a Type-II GRP over the BLUP is also obtained. Third, the problem of confidence ellipsoids based on the BLUP and Type-II GRP is investigated.  相似文献   

2.
This paper considers the problem of simultaneous prediction of the actual and average values of the dependent variable in a general linear regression model. Utilizing the philosophy of Stein rule procedure, a family of improved predictors for a linear function of the actual and expected value of the dependent variable for the forecast period has been proposed. An unbiased estimator for the mean squared error (MSE) matrix of the proposed family of predictors has been obtained and dominance of the family of Stein rule predictors over the best linear unbiased predictor (BLUP) has been established under a quadratic loss function.  相似文献   

3.
Ordinary least squares estimator (OLSE), best linear unbiased estimator (BLUE), and best linear unbiased predictor (BLUP) in the general linear model with new observations are generalized to the general multivariate linear model. The fundamental equations of BLUE and BLUP in the multivariate linear model are derived by two methods, including the vectorization method and projection method. By using the matrix rank method, some new results of linear BLUE-sufficiency, linear BLUP-sufficiency, and the equality of OLSE, BLUE, and BLUP are given in the multivariate linear model.  相似文献   

4.
The equality of ordinary least squares estimator (OLSE), best linear unbiased estimator (BLUE) and best linear unbiased predictor (BLUP) in the general linear model with new observations is investigated through matrix rank method, some new necessary and sufficient conditions are given.  相似文献   

5.
We consider the prediction of new observations in a general Gauss–Markov model. We state the fundamental equations of the best linear unbiased prediction, BLUP, and consider some properties of the BLUP. Particularly, we focus on such linear statistics, which preserve enough information for obtaining the BLUP of new observations as a linear function of them. We call such statistics linearly prediction sufficient for new observations, and introduce some equivalent characterizations for this new concept.  相似文献   

6.
This article is concerned with the prediction problems in linear mixed models (LMM). Both biased predictors and restricted predictors are introduced. It was found that the mean square error matrix (MSEM) of a predictor strongly depends on the MSEM of corresponding estimator of the fixed effects and precise formulas are obtained. As an application, we propose three new predictors to improve the best linear unbiased predictor (BLUP). The performance of the new predictors can be examined easily with the help of vast literature on the linear regression models (LM). We also illustrate our findings with a Monte Carlo simulation and a numerical example.  相似文献   

7.
Recently, the orthodox best linear unbiased predictor (BLUP) method was introduced for inference about random effects in Tweedie mixed models. With the use of h-likelihood, we illustrate that the standard likelihood procedures, developed for inference about fixed unknown parameters, can be used for inference about random effects. We show that the necessary standard error for the prediction interval of the random effect can be computed from the Hessian matrix of the h-likelihood. We also show numerically that the h-likelihood provides a prediction interval that maintains a more precise coverage probability than the BLUP method.  相似文献   

8.
This paper considers the problem of simultaneously predicting/estimating unknown parameter spaces in a linear random-effects model with both parameter restrictions and missing observations. We shall establish explicit formulas for calculating the best linear unbiased predictors (BLUPs) of all unknown parameters in such a model, and derive a variety of mathematical and statistical properties of the BLUPs under general assumptions. We also discuss some matrix expressions related to the covariance matrix of the BLUP, and present various necessary and sufficient conditions for several equalities and inequalities of the covariance matrix of the BLUP to hold.  相似文献   

9.
On MSE of EBLUP   总被引:1,自引:1,他引:0  
We consider Best Linear Unbiased Predictors (BLUPs) and Empirical Best Linear Unbiased Predictors (EBLUPs) under the general mixed linear model. The BLUP was proposed by Henderson (Ann Math Stat 21:309–310, 1950). The formula of this BLUP includes unknown elements of the variance-covariance matrix of random variables. If the elements in the formula of the BLUP proposed by Henderson (Ann Math Stat 21:309–310, 1950) are replaced by some type of estimators, we obtain the two-stage predictor called the EBLUP which is model-unbiased (Kackar and Harville in Commun Stat A 10:1249–1261, 1981). Kackar and Harville (J Am Stat Assoc 79:853–862, 1984) show an approximation of the mean square error (the MSE) of the predictor and propose an estimator of the MSE. The MSE and estimators of the MSE are also studied by Prasad and Rao (J Am Stat Assoc 85:163–171, 1990), Datta and Lahiri (Stat Sin 10:613–627, 2000) and Das et al. (Ann Stat 32(2):818–840, 2004). In the paper we consider the BLUP proposed by Royall (J Am Stat Assoc 71:657–473, 1976. Ża̧dło (On unbiasedness of some EBLU predictor. Physica-Verlag, Heidelberg, pp 2019–2026, 2004) shows that the BLUP proposed by Royall (J Am Stat Assoc 71:657–473, 1976) may be treated as a generalisation of the BLUP proposed by Henderson (Ann Math Stat 21:309–310, 1950) and proves model unbiasedness of the EBLUP based on the formula of the BLUP proposed by Royall (J Am Stat Assoc 71:657–473, 1976) under some assumptions. In this paper we derive the formula of the approximate MSE of the EBLUP and its estimators. We prove that the approximation of the MSE is accurate to terms o(D −1) and that the estimator of the MSE is approximately unbiased in the sense that its bias is o(D −1) under some assumptions, where D is the number of domains. The proof is based on the results obtained by Datta and Lahiri (Stat Sin 10:613–627, 2000). Using our results we show some EBLUP based on the special case of the general linear model. We also present the formula of its MSE and estimators of its MSE and their performance in Monte Carlo simulation study.   相似文献   

10.
ON THE SIMPLE PROJECTION PREDICTOR IN FINITE POPULATIONS   总被引:19,自引:0,他引:19  
In this paper, necessary and sufficient conditions for optimality of the simple projection predictor (SPP) are considered under a superpopula-tion model with a not necessarily diagonal covariance matrix. Conditions under which the SPP remains optimal, under possible covariance matrix misspecifications, are also considered.  相似文献   

11.
We consider robust Bayesian prediction of a function of unobserved data based on observed data under an asymmetric loss function. Under a general linear-exponential posterior risk function, the posterior regret gamma-minimax (PRGM), conditional gamma-minimax (CGM), and most stable (MS) predictors are obtained when the prior distribution belongs to a general class of prior distributions. We use this general form to find the PRGM, CGM, and MS predictors of a general linear combination of the finite population values under LINEX loss function on the basis of two classes of priors in a normal model. Also, under the general ε-contamination class of prior distributions, the PRGM predictor of a general linear combination of the finite population values is obtained. Finally, we provide a real-life example to predict a finite population mean and compare the estimated risk and risk bias of the obtained predictors under the LINEX loss function by a simulation study.  相似文献   

12.
One of the standard variable selection procedures in multiple linear regression is to use a penalisation technique in least‐squares (LS) analysis. In this setting, many different types of penalties have been introduced to achieve variable selection. It is well known that LS analysis is sensitive to outliers, and consequently outliers can present serious problems for the classical variable selection procedures. Since rank‐based procedures have desirable robustness properties compared to LS procedures, we propose a rank‐based adaptive lasso‐type penalised regression estimator and a corresponding variable selection procedure for linear regression models. The proposed estimator and variable selection procedure are robust against outliers in both response and predictor space. Furthermore, since rank regression can yield unstable estimators in the presence of multicollinearity, in order to provide inference that is robust against multicollinearity, we adjust the penalty term in the adaptive lasso function by incorporating the standard errors of the rank estimator. The theoretical properties of the proposed procedures are established and their performances are investigated by means of simulations. Finally, the estimator and variable selection procedure are applied to the Plasma Beta‐Carotene Level data set.  相似文献   

13.
The accurate estimation of an individual's usual dietary intake is an important topic in nutritional epidemiology. This paper considers the best linear unbiased predictor (BLUP) computed from repeatedly measured dietary data and derives several nonparametric prediction intervals for true intake. However, the performance of the BLUP and the validity of prediction intervals depends on whether required model assumptions for the true intake estimation problem hold. To address this issue, the paper examines how the BLUP and prediction intervals behave in the case of a violation of model assumptions, and then proposes an analysis pipeline for checking them with data.  相似文献   

14.
Partial linear varying coefficient models (PLVCM) are often considered for analysing longitudinal data for a good balance between flexibility and parsimony. The existing estimation and variable selection methods for this model are mainly built upon which subset of variables have linear or varying effect on the response is known in advance, or say, model structure is determined. However, in application, this is unreasonable. In this work, we propose a simultaneous structure estimation and variable selection method, which can do simultaneous coefficient estimation and three types of selections: varying and constant effects selection, relevant variable selection. It can be easily implemented in one step by employing a penalized M-type regression, which uses a general loss function to treat mean, median, quantile and robust mean regressions in a unified framework. Consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies and real data analysis also confirm our method.  相似文献   

15.
16.
The best linear unbiased predictor (BLUP) of the random parameter in a linear mixed model satisfies a linear constraint, which has been previously termed a built-in restriction. In other literature, constraints on the random parameter itself have been introduced into the modeling framework. The present article has two goals. First, it explores the idea of imposing the built-in restrictions on the BLUP as constraints on the random parameter. Second, it investigates the built-in restrictions satisfied by certain smoothing spline analysis of variance (SSANOVA) estimators, and compares these restrictions to arguably more natural side conditions on the ANOVA decomposition.  相似文献   

17.
A predictor variable or dose that is measured with substantial error may possess an error-free milestone, such that it is known with negligible error whether the value of the variable is to the left or right of the milestone. Such a milestone provides a basis for estimating a linear relationship between the true but unknown value of the error-free predictor and an outcome, because the milestone creates a strong and valid instrumental variable. The inferences are nonparametric and robust, and in the simplest cases, they are exact and distribution free. We also consider multiple milestones for a single predictor and milestones for several predictors whose partial slopes are estimated simultaneously. Examples are drawn from the Wisconsin Longitudinal Study, in which a BA degree acts as a milestone for sixteen years of education, and the binary indicator of military service acts as a milestone for years of service.  相似文献   

18.
A problem arising from the study of the spread of a viral infection among potato plants by aphids appears to involve a mixture of two linear regressions on a single predictor variable. The plant scientists studying the problem were particularly interested in obtaining a 95% confidence upper bound for the infection rate. We discuss briefly the procedure for fitting mixtures of regression models by means of maximum likelihood, effected via the EM algorithm. We give general expressions for the implementation of the M-step and then address the issue of conducting statistical inference in this context. A technique due to T. A. Louis may be used to estimate the covariance matrix of the parameter estimates by calculating the observed Fisher information matrix. We develop general expressions for the entries of this information matrix. Having the complete covariance matrix permits the calculation of confidence and prediction bands for the fitted model. We also investigate the testing of hypotheses concerning the number of components in the mixture via parametric and 'semiparametric' bootstrapping. Finally, we develop a method of producing diagnostic plots of the residuals from a mixture of linear regressions.  相似文献   

19.
This paper investigates the robustness of designed experiments for estimating linear functions of a subset of parameters in a general linear model against the loss of any t( ≥1) observations. Necessary and sufficient conditions for robustness of a design under a homoscedastic model are derived. It is shown that a design robust under a homoscedastic model is also robust under a general heteroscedastic model with correlated observations. As a particular case, necessary and sufficient conditions are obtained for the robustness of block designs against the loss of data. Simple sufficient conditions are also provided for the binary block designs to be robust against the loss of data. Some classes of designs, robust up to three missing observations, are identified. A-efficiency of the residual design is evaluated for certain block designs for several patterns of two missing observations. The efficiency of the residual design has also been worked out when all the observations in any two blocks, not necessarily disjoint, are lost. The lower bound to A-efficiency has also been obtained for the loss of t observations. Finally, a general expression is obtained for the efficiency of the residual design when all the observations of m ( ≥1) disjoint blocks are lost.  相似文献   

20.
In this article, we consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors, in the presence of outliers. Since the LASSO is a special case of the penalized least-square regression with L1 penalty function, it suffers from the heavy-tailed errors and/or outliers in data. Recently, Least Absolute Deviation (LAD) and the LASSO methods have been combined (the LAD-LASSO regression method) to carry out robust parameter estimation and variable selection simultaneously for a multiple linear regression model. However, variable selection of the functional predictors based on LASSO fails since multiple parameters exist for a functional predictor. Therefore, group LASSO is used for selecting functional predictors since group LASSO selects grouped variables rather than individual variables. In this study, we propose a robust functional predictor selection method, the LAD-group LASSO, for a functional linear regression model with a scalar response and functional predictors. We illustrate the performance of the LAD-group LASSO on both simulated and real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号