首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feature selection often constitutes one of the central aspects of many scientific investigations. Among the methodologies for feature selection in penalized regression, the smoothly clipped and absolute deviation seems to be very useful because it satisfies the oracle property. However, its estimation algorithms such as the local quadratic approximation and the concave–convex procedure are not computationally efficient. In this paper, we propose an efficient penalization path algorithm. Through numerical examples on real and simulated data, we illustrate that our path algorithm can be useful for feature selection in regression problems.  相似文献   

2.
We consider the problem of estimating the mean of a multivariate distribution. As a general alternative to penalized least squares estimators, we consider minimax estimators for squared error over a restricted parameter space where the restriction is determined by the penalization term. For a quadratic penalty term, the minimax estimator among linear estimators can be found explicitly. It is shown that all symmetric linear smoothers with eigenvalues in the unit interval can be characterized as minimax linear estimators over a certain parameter space where the bias is bounded. The minimax linear estimator depends on smoothing parameters that must be estimated in practice. Using results in Kneip (1994), this can be done using Mallows' C L -statistic and the resulting adaptive estimator is now asymptotically minimax linear. The minimax estimator is compared to the penalized least squares estimator both in finite samples and asymptotically.  相似文献   

3.
In this paper, we propose the hard thresholding regression (HTR) for estimating high‐dimensional sparse linear regression models. HTR uses a two‐stage convex algorithm to approximate the ?0‐penalized regression: The first stage calculates a coarse initial estimator, and the second stage identifies the oracle estimator by borrowing information from the first one. Theoretically, the HTR estimator achieves the strong oracle property over a wide range of regularization parameters. Numerical examples and a real data example lend further support to our proposed methodology.  相似文献   

4.
A problem of using a non‐convex penalty for sparse regression is that there are multiple local minima of the penalized sum of squared residuals, and it is not known which one is a good estimator. The aim of this paper is to give a guide to design a non‐convex penalty that has the strong oracle property. Here, the strong oracle property means that the oracle estimator is the unique local minimum of the objective function. We summarize three definitions of the oracle property – the global, weak and strong oracle properties. Then, we give sufficient conditions for the weak oracle property, which means that the oracle estimator becomes a local minimum. We give an example of non‐convex penalties that possess the weak oracle property but not the strong oracle property. Finally, we give a necessary condition for the strong oracle property.  相似文献   

5.
In high-dimensional data analysis, penalized likelihood estimators are shown to provide superior results in both variable selection and parameter estimation. A new algorithm, APPLE, is proposed for calculating the Approximate Path for Penalized Likelihood Estimators. Both convex penalties (such as LASSO) and folded concave penalties (such as MCP) are considered. APPLE efficiently computes the solution path for the penalized likelihood estimator using a hybrid of the modified predictor-corrector method and the coordinate-descent algorithm. APPLE is compared with several well-known packages via simulation and analysis of two gene expression data sets.  相似文献   

6.
This article studies variable selection and parameter estimation in the partially linear model when the number of covariates in the linear part increases to infinity. Using the bridge penalty method, we succeed in selecting the important covariates of the linear part. Under regularity conditions, we have shown that the bridge penalized estimator of the parametric part enjoys the oracle property. We also obtain the convergence rate of the estimator of the nonparametric part. Simulation studies show that the bridge estimator performs as well as the oracle estimator for the partially linear model. An application is analyzed to illustrate the bridge procedure.  相似文献   

7.
It is well known that M-estimation is a widely used method for robust statistical inference and the varying coefficient models have been widely applied in many scientific areas. In this paper, we consider M-estimation and model identification of bivariate varying coefficient models for longitudinal data. We make use of bivariate tensor-product B-splines as an approximation of the function and consider M-type regression splines by minimizing the objective convex function. Mean and median regressions are included in this class. Moreover, with a double smoothly clipped absolute deviation (SCAD) penalization, we study the problem of simultaneous structure identification and estimation. Under approximate conditions, we show that the proposed procedure possesses the oracle property in the sense that it is as efficient as the estimator when the true model is known prior to statistical analysis. Simulation studies are carried out to demonstrate the methodological power of the proposed methods with finite samples. The proposed methodology is illustrated with an analysis of a real data example.  相似文献   

8.
Huang J  Ma S  Li H  Zhang CH 《Annals of statistics》2011,39(4):2021-2046
We propose a new penalized method for variable selection and estimation that explicitly incorporates the correlation patterns among predictors. This method is based on a combination of the minimax concave penalty and Laplacian quadratic associated with a graph as the penalty function. We call it the sparse Laplacian shrinkage (SLS) method. The SLS uses the minimax concave penalty for encouraging sparsity and Laplacian quadratic penalty for promoting smoothness among coefficients associated with the correlated predictors. The SLS has a generalized grouping property with respect to the graph represented by the Laplacian quadratic. We show that the SLS possesses an oracle property in the sense that it is selection consistent and equal to the oracle Laplacian shrinkage estimator with high probability. This result holds in sparse, high-dimensional settings with p ? n under reasonable conditions. We derive a coordinate descent algorithm for computing the SLS estimates. Simulation studies are conducted to evaluate the performance of the SLS method and a real data example is used to illustrate its application.  相似文献   

9.
We study the distribution of the adaptive LASSO estimator [Zou, H., 2006. The adaptive LASSO and its oracle properties. J. Amer. Statist. Assoc. 101, 1418–1429] in finite samples as well as in the large-sample limit. The large-sample distributions are derived both for the case where the adaptive LASSO estimator is tuned to perform conservative model selection as well as for the case where the tuning results in consistent model selection. We show that the finite-sample as well as the large-sample distributions are typically highly nonnormal, regardless of the choice of the tuning parameter. The uniform convergence rate is also obtained, and is shown to be slower than n-1/2n-1/2 in case the estimator is tuned to perform consistent model selection. In particular, these results question the statistical relevance of the ‘oracle’ property of the adaptive LASSO estimator established in Zou [2006. The adaptive LASSO and its oracle properties. J. Amer. Statist. Assoc. 101, 1418–1429]. Moreover, we also provide an impossibility result regarding the estimation of the distribution function of the adaptive LASSO estimator. The theoretical results, which are obtained for a regression model with orthogonal design, are complemented by a Monte Carlo study using nonorthogonal regressors.  相似文献   

10.
In this paper an estimator of the population mean is introduced by using the idea of selective probability vector and the optimization algorithm of linear programming to find the optimal solution of the selective probability vector under the condition of unbiasedness.  相似文献   

11.
In the paper the problem of testing hypotheses for variance components in mixed linear models is considered. It is assumed that covariance matrices commute after using the usual invariance procedure with respect to the group of translations. The test for vanishing of single variance component is based on the locally best quadratic unbiased estimator of this component and rejects hypothesis if the ratio of positive and negative part of this estimator is sufficiently large. The power of this test with powers of other four tests for two-way classification models corresponding to block design is compared.  相似文献   

12.
Two common kernel-based methods for non-parametric regression estimation suffer from well-known drawbacks when the design is random. The Gasser-Müller estimator is inadmissible due to its high variance while the Nadaraya-Watson estimator has zero asymptotic efficiency because of poor bias behavior. Under asymptotic consideration, the local linear estimator avoids these two drawbacks of kernel estimators and achieves minimax optimality. However, when based on compact support kernels its finite sample behavior is disappointing because sudden kinks may show up in the estimate.

This paper proposes a modification of the kernel estimator, called the binned convolution estimator leading to a fast O(n) method. Provided the design density is continously differentiable and the conditional fourth moments exist the binned convolution estimator has asymptotic properties identical with those of the local linear estimator.  相似文献   

13.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

14.
High-dimensional data with a group structure of variables arise always in many contemporary statistical modelling problems. Heavy-tailed errors or outliers in the response often exist in these data. We consider robust group selection for partially linear models when the number of covariates can be larger than the sample size. The non-convex penalty function is applied to achieve both goals of variable selection and estimation in the linear part simultaneously, and we use polynomial splines to estimate the nonparametric component. Under regular conditions, we show that the robust estimator enjoys the oracle property. Simulation studies demonstrate the performance of the proposed method with samples of moderate size. The analysis of a real example illustrates that our method works well.  相似文献   

15.
An iterative solution to the problem of maximizing a concave functional ø defined on the set of all probability measures on a topological space is considered. Convergence of this procedure and a rapidly converging algorithm are studied. Computational aspects of this algorithm along with the ones developed earlier by Wynn, Fedorov, Atwood, Wu and others are provided. Examples discussed are taken from the area of mixture likehoods and optimal experimental design.  相似文献   

16.
This paper focuses on the variable selection for semiparametric varying coefficient partially linear model when the covariates are measured with additive errors and the response is missing. An adaptive lasso estimator and the smoothly clipped absolute deviation estimator as a comparison for the parameters are proposed. With the proper selection of regularization parameter, the sampling properties including the consistency of the two procedures and the oracle properties are established. Furthermore, the algorithms and corresponding standard error formulas are discussed. A simulation study is carried out to assess the finite sample performance of the proposed methods.  相似文献   

17.
It is well known that the unimodal maximum likelihood estimator of a density is consistent everywhere but at the mode. The authors review various ways to solve this problem and propose a new estimator that is concave over an interval containing the mode; this interval may be chosen by the user or through an algorithm. The authors show how to implement their solution and compare it to other approaches through simulations. They show that the new estimator is consistent everywhere and determine its rate of convergence in the Hellinger metric.  相似文献   

18.
In this paper, a penalized weighted composite quantile regression estimation procedure is proposed to estimate unknown regression parameters and autoregression coefficients in the linear regression model with heavy-tailed autoregressive errors. Under some conditions, we show that the proposed estimator possesses the oracle properties. In addition, we introduce an iterative algorithm to achieve the proposed optimization problem, and use a data-driven method to choose the tuning parameters. Simulation studies demonstrate that the proposed new estimation method is robust and works much better than the least squares based method when there are outliers in the dataset or the autoregressive error distribution follows heavy-tailed distributions. Moreover, the proposed estimator works comparably to the least squares based estimator when there are no outliers and the error is normal. Finally, we apply the proposed methodology to analyze the electricity demand dataset.  相似文献   

19.
This paper deals with the problem of multicollinearity in a multiple linear regression model with linear equality restrictions. The restricted two parameter estimator which was proposed in case of multicollinearity satisfies the restrictions. The performance of the restricted two parameter estimator over the restricted least squares (RLS) estimator and the ordinary least squares (OLS) estimator is examined under the mean square error (MSE) matrix criterion when the restrictions are correct and not correct. The necessary and sufficient conditions for the restricted ridge regression, restricted Liu and restricted shrunken estimators, which are the special cases of the restricted two parameter estimator, to have a smaller MSE matrix than the RLS and the OLS estimators are derived when the restrictions hold true and do not hold true. Theoretical results are illustrated with numerical examples based on Webster, Gunst and Mason data and Gorman and Toman data. We conduct a final demonstration of the performance of the estimators by running a Monte Carlo simulation which shows that when the variance of the error term and the correlation between the explanatory variables are large, the restricted two parameter estimator performs better than the RLS estimator and the OLS estimator under the configurations examined.  相似文献   

20.
We consider estimation in a high-dimensional linear model with strongly correlated variables. We propose to cluster the variables first and do subsequent sparse estimation such as the Lasso for cluster-representatives or the group Lasso based on the structure from the clusters. Regarding the first step, we present a novel and bottom-up agglomerative clustering algorithm based on canonical correlations, and we show that it finds an optimal solution and is statistically consistent. We also present some theoretical arguments that canonical correlation based clustering leads to a better-posed compatibility constant for the design matrix which ensures identifiability and an oracle inequality for the group Lasso. Furthermore, we discuss circumstances where cluster-representatives and using the Lasso as subsequent estimator leads to improved results for prediction and detection of variables. We complement the theoretical analysis with various empirical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号