首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generalized partially linear varying-coefficient models   总被引:1,自引:0,他引:1  
Generalized varying-coefficient models are useful extensions of generalized linear models. They arise naturally when investigating how regression coefficients change over different groups characterized by certain covariates such as age. In this paper, we extend these models to generalized partially linear varying-coefficient models, in which some coefficients are constants and the others are functions of certain covariates. Procedures for estimating the linear and non-parametric parts are developed and their associated statistical properties are studied. The methods proposed are illustrated using some simulations and real data analysis.  相似文献   

2.
This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted to examine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.  相似文献   

3.
In this paper, we propose a new varying coefficient partially nonlinear model where both the response and predictors are not directly observed, but are observed by unknown distorting functions of a commonly observable covariate. Because of the complexity of the model, existing estimation methods cannot be directly employed. For this, we propose using an efficient nonparametric regression to estimate the unknown distortion functions concerning the covariates and response on the distorting variable, and further, we obtain the profile nonlinear least squares estimators for the parameters and the coefficient functions using the calibrated variables. Furthermore, we establish the asymptotic properties of the resulting estimators. To illustrate our proposed methodology, we carry out some simulated and real examples.  相似文献   

4.
Abstract

The purpose of this paper is twofold. First, we investigate estimations in varying-coefficient partially linear errors-in-variables models with covariates missing at random. However, the estimators are often biased due to the existence of measurement errors, the bias-corrected profile least-squares estimator and local liner estimators for unknown parametric and coefficient functions are obtained based on inverse probability weighted method. The asymptotic properties of the proposed estimators both for the parameter and nonparametric parts are established. Second, we study asymptotic distributions of an empirical log-likelihood ratio statistic and maximum empirical likelihood estimator for the unknown parameter. Based on this, more accurate confidence regions of the unknown parameter can be constructed. The methods are examined through simulation studies and illustrated by a real data analysis.  相似文献   

5.
This paper develops a robust estimation procedure for the varying-coefficient partially linear model via local rank technique. The new procedure provides a highly efficient and robust alternative to the local linear least-squares method. In other words, the proposed method is highly efficient across a wide class of non-normal error distributions and it only loses a small amount of efficiency for normal error. Moreover, a test for the hypothesis of constancy for the nonparametric component is proposed. The test statistic is simple and thus the test procedure can be easily implemented. We conduct Monte Carlo simulation to examine the finite sample performance of the proposed procedures and apply them to analyse the environment data set. Both the theoretical and the numerical results demonstrate that the performance of our approach is at least comparable to those existing competitors.  相似文献   

6.
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method.  相似文献   

7.
In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods.  相似文献   

8.
Abstract

This paper is concerned with model averaging procedure for varying-coefficient partially linear models. We proposed a jackknife model averaging method that involves minimizing a leave-one-out cross-validation criterion, and developed a computational shortcut to optimize the cross-validation criterion for weight choice. The resulting model average estimator is shown to be asymptotically optimal in terms of achieving the smallest possible squared error. The simulation studies have provided evidence of the superiority of the proposed procedures. Our approach is further applied to a real data.  相似文献   

9.
We study bandwidth selection for a class of semi-parametric models. The proper choice of optimal bandwidth minimizes the prediction errors of the model. We provide detailed derivation of our procedure and the corresponding computation algorithms. Our proposed method simplifies the computation of the cross-validation criteria and facilitates more complicated inference and analysis in practice. A data set from Wisconsin Diabetes Registry has been analysed as an illustration.  相似文献   

10.
Nonparametric regression—directly or indirectly observed—is one of the important statistical models. On one hand it contains two infinite dimensional parameters (the regression function and the error density), and on the other it is of rather simple structure. Therefore, it may serve as an interesting paradigm for illustrating or developing abstract statistical theory for non-Euclidean parameters. In this paper estimation of a linear functional of the indirectly observed regression function is considered, when a deterministic design is used. It should be noted that any Fourier coefficient of an expansion of the regression function in an orthonormal basis is such a functional. Because the design is deterministic the observables are independent but not identically distributed. Local asymptotic normality is established and applied to prove Hájek's convolution theorem for this functional. Pertinent references are Beran [1977. Robust location estimates. Ann. Statist. 5, 431–444] and McNeney and Wellner [2000. Application of convolution theorems in semiparametric models with non-i.i.d. data. J. Statist. Plann. Inference 91, 441–480]. For purposes explained above, however, the paper is kept self-contained and full proofs are provided.  相似文献   

11.
Varying-coefficient partially linear models provide a useful tools for modeling of covariate effects on the response variable in regression. One key question in varying-coefficient partially linear models is the choice of model structure, that is, how to decide which covariates have linear effect and which have non linear effect. In this article, we propose a profile method for identifying the covariates with linear effect or non linear effect. Our proposed method is a penalized regression approach based on group minimax concave penalty. Under suitable conditions, we show that the proposed method can correctly determine which covariates have a linear effect and which do not with high probability. The convergence rate of the linear estimator is established as well as the asymptotical normality. The performance of the proposed method is evaluated through a simulation study which supports our theoretical results.  相似文献   

12.
In this paper,we propose a class of general partially linear varying-coefficient transformation models for ranking data. In the models, the functional coefficients are viewed as nuisance parameters and approximated by B-spline smoothing approximation technique. The B-spline coefficients and regression parameters are estimated by rank-based maximum marginal likelihood method. The three-stage Monte Carlo Markov Chain stochastic approximation algorithm based on ranking data is used to compute estimates and the corresponding variances for all the B-spline coefficients and regression parameters. Through three simulation studies and a Hong Kong horse racing data application, the proposed procedure is illustrated to be accurate, stable and practical.  相似文献   

13.
In this paper, we consider the partial linear model with the covariables missing at random. Empirical likelihood ratios for the regression coefficients and the baseline function are investigated, the empirical log-likelihood ratios are proven to be asymptotically chi-squared and the corresponding confidence regions for the parameters of interest are then constructed. The finite sample behavior of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial dataset.  相似文献   

14.
In the context of longitudinal data analysis, a random function typically represents a subject that is often observed at a small number of time point. For discarding this restricted condition of observation number of each subject, we consider the semiparametric partially linear regression models with mean function x?βx?β + g(z), where x and z   are functional data. The estimations of ββ and g(z) are presented and some asymptotic results are given. It is shown that the estimator of the parametric component is asymptotically normal. The convergence rate of the estimator of the nonparametric component is also obtained. Here, the observation number of each subject is completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators.  相似文献   

15.
A nonconcave penalized estimation method is proposed for partially linear models with longitudinal data when the number of parameters diverges with the sample size. The proposed procedure can simultaneously estimate the parameters and select the important variables. Under some regularity conditions, the rate of convergence and asymptotic normality of the resulting estimators are established. In addition, an iterative algorithm is proposed to implement the proposed estimators. To improve efficiency for regression coefficients, the estimation of the covariance function is integrated in the iterative algorithm. Simulation studies are carried out to demonstrate that the proposed method performs well, and a real data example is analysed to illustrate the proposed procedure.  相似文献   

16.
17.
Inspired by a primary hypertension study was conducted by Chinese government in the Inner Mongolia Autonomous Region, we introduce partially linear models with multivariate responses to evaluate the simultaneous effects of modifiable risk factors on both the systolic and the diastolic blood pressures. We propose a class of weighted profile least-squares approaches to estimate both the parametric and the nonparametric components of the multivariate partially linear models. We also investigate how the weight matrix affects the resultant estimation efficiency. We illustrate our proposals through simulations and an analysis of the primary hypertension data. Our analysis provides strong evidence that the obesity is indeed an important risk factor predisposing to primary hypertension even after adjusting for the ageing effect.  相似文献   

18.
19.
In this paper, we study the estimation of the unbalanced panel data partially linear models with a one-way error components structure. A weighted semiparametric least squares estimator (WSLSE) is developed using polynomial spline approximation and least squares. We show that the WSLSE is asymptotically more efficient than the corresponding unweighted estimator for both parametric and nonparametric components of the model. This is a significant improvement over previous results in the literature which showed that the simply weighting technique can only improve the estimation of the parametric component. The asymptotic normalities of the proposed WSLSE are also established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号