共查询到20条相似文献,搜索用时 0 毫秒
1.
Varying coefficient partially linear models are usually used for longitudinal data analysis, and an interest is mainly to improve efficiency of regression coefficients. By the orthogonality estimation technology and the quadratic inference function method, we propose a new orthogonality-based estimation method to estimate parameter and nonparametric components in varying coefficient partially linear models with longitudinal data. The proposed procedure can separately estimate the parametric and nonparametric components, and the resulting estimators do not affect each other. Under some mild conditions, we establish some asymptotic properties of the resulting estimators. Furthermore, the finite sample performance of the proposed procedure is assessed by some simulation experiments. 相似文献
2.
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method. 相似文献
3.
Generalized partially linear varying-coefficient models 总被引:1,自引:0,他引:1
Generalized varying-coefficient models are useful extensions of generalized linear models. They arise naturally when investigating how regression coefficients change over different groups characterized by certain covariates such as age. In this paper, we extend these models to generalized partially linear varying-coefficient models, in which some coefficients are constants and the others are functions of certain covariates. Procedures for estimating the linear and non-parametric parts are developed and their associated statistical properties are studied. The methods proposed are illustrated using some simulations and real data analysis. 相似文献
4.
Nonparametric regression—directly or indirectly observed—is one of the important statistical models. On one hand it contains two infinite dimensional parameters (the regression function and the error density), and on the other it is of rather simple structure. Therefore, it may serve as an interesting paradigm for illustrating or developing abstract statistical theory for non-Euclidean parameters. In this paper estimation of a linear functional of the indirectly observed regression function is considered, when a deterministic design is used. It should be noted that any Fourier coefficient of an expansion of the regression function in an orthonormal basis is such a functional. Because the design is deterministic the observables are independent but not identically distributed. Local asymptotic normality is established and applied to prove Hájek's convolution theorem for this functional. Pertinent references are Beran [1977. Robust location estimates. Ann. Statist. 5, 431–444] and McNeney and Wellner [2000. Application of convolution theorems in semiparametric models with non-i.i.d. data. J. Statist. Plann. Inference 91, 441–480]. For purposes explained above, however, the paper is kept self-contained and full proofs are provided. 相似文献
5.
6.
An alternative form of the Watson efficiency 总被引:1,自引:0,他引:1
Watson [1951. Serial correlation in regression analysis. Ph.D. Thesis, Department of Experimental Statistics, North Carolina State College, Raleigh] introduced a relative efficiency, which is often called the Watson efficiency in literatures, to measure the inefficiency of the least squares in linear regression models. The Watson efficiency is defined by determinant, but we shall show by two examples that such a criterion does not always work well in some cases. In this paper, an alternative form based on Euclidean norm of the Watson efficiency is proposed and some examples are given to illustrate superiority of the new relative efficiency. 相似文献
7.
In this paper a new multivariate regression estimate is introduced. It is based on ideas derived in the context of wavelet estimates and is constructed by hard thresholding of estimates of coefficients of a series expansion of the regression function. Multivariate functions constructed analogously to the classical Haar wavelets are used for the series expansion. These functions are orthogonal in L2(μn), where μn denotes the empirical design measure. The construction can be considered as designing adapted Haar wavelets. 相似文献
8.
9.
10.
11.
In this paper, we consider simple random sampling without replacement from a dichotomous finite population. We investigate accuracy of the Normal approximation to the Hypergeometric probabilities for a wide range of parameter values, including the nonstandard cases where the sampling fraction tends to one and where the proportion of the objects of interest in the population tends to the boundary values, zero and one. We establish a non-uniform Berry–Esseen theorem for the Hypergeometric distribution which shows that in the nonstandard cases, the rate of Normal approximation to the Hypergeometric distribution can be considerably slower than the rate of Normal approximation to the Binomial distribution. We also report results from a moderately large numerical study and provide some guidelines for using the Normal approximation to the Hypergeometric distribution in finite samples. 相似文献
12.
This paper addresses the problem of the probability density estimation in the presence of covariates when data are missing at random (MAR). The inverse probability weighted method is used to define a nonparametric and a semiparametric weighted probability density estimators. A regression calibration technique is also used to define an imputed estimator. It is shown that all the estimators are asymptotically normal with the same asymptotic variance as that of the inverse probability weighted estimator with known selection probability function and weights. Also, we establish the mean squared error (MSE) bounds and obtain the MSE convergence rates. A simulation is carried out to assess the proposed estimators in terms of the bias and standard error. 相似文献
13.
Yiping Yang Liugen Xue Weihu Cheng 《Journal of statistical planning and inference》2009,139(12):4143-4153
In this paper, we consider the partial linear model with the covariables missing at random. Empirical likelihood ratios for the regression coefficients and the baseline function are investigated, the empirical log-likelihood ratios are proven to be asymptotically chi-squared and the corresponding confidence regions for the parameters of interest are then constructed. The finite sample behavior of the proposed method is evaluated with simulation and illustrated with an AIDS clinical trial dataset. 相似文献
14.
Motivated by Chaudhuri's work [1996. On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc. 91, 862–872] on unconditional geometric quantiles, we explore the asymptotic properties of sample geometric conditional quantiles, defined through kernel functions, in high-dimensional spaces. We establish a Bahadur-type linear representation for the geometric conditional quantile estimator and obtain the convergence rate for the corresponding remainder term. From this, asymptotic normality including bias on the estimated geometric conditional quantile is derived. Based on these results, we propose confidence ellipsoids for multivariate conditional quantiles. The methodology is illustrated via data analysis and a Monte Carlo study. 相似文献
15.
We propose a new procedure for combining multiple tests in samples of right-censored observations. The new method is based on multiple constrained censored empirical likelihood where the constraints are formulated as linear functionals of the cumulative hazard functions. We prove a version of Wilks’ theorem for the multiple constrained censored empirical likelihood ratio, which provides a simple reference distribution for the test statistic of our proposed method. A useful application of the proposed method is, for example, examining the survival experience of different populations by combining different weighted log-rank tests. Real data examples are given using the log-rank and Gehan-Wilcoxon tests. In a simulation study of two sample survival data, we compare the proposed method of combining tests to previously developed procedures. The results demonstrate that, in addition to its computational simplicity, the combined test performs comparably to, and in some situations more reliably than previously developed procedures. Statistical software is available in the R package ‘emplik’. 相似文献
16.
17.
Trimmed (and Winsorized) means based on a scaled deviation are introduced and studied. The influence functions of the estimators are derived and their limiting distributions are established via asymptotic representations. As a main focus of the paper, the performance of the estimators with respect to various robustness and efficiency criteria is evaluated and compared with leading competitors including the ordinary Tukey trimmed (and Winsorized) means. Unlike the Tukey trimming which always trims a fixed fraction of sample points at each end of data, the trimming scheme here only trims points at one or both ends that have a scaled deviation beyond some threshold. The resulting trimmed (and Winsorized) means are much more robust than their predecessors. Indeed they can share the best breakdown point robustness of the sample median for any common trimming thresholds. Furthermore, for appropriate trimming thresholds they are highly efficient at light-tailed symmetric models and more efficient than their predecessors at heavy-tailed or contaminated symmetric models. Detailed comparisons with leading competitors on various robustness and efficiency aspects reveal that the scaled deviation trimmed (Winsorized) means behave very well overall and consequently represent very favorable alternatives to the ordinary trimmed (Winsorized) means. 相似文献
18.
In this paper, we study the estimation of the unbalanced panel data partially linear models with a one-way error components structure. A weighted semiparametric least squares estimator (WSLSE) is developed using polynomial spline approximation and least squares. We show that the WSLSE is asymptotically more efficient than the corresponding unweighted estimator for both parametric and nonparametric components of the model. This is a significant improvement over previous results in the literature which showed that the simply weighting technique can only improve the estimation of the parametric component. The asymptotic normalities of the proposed WSLSE are also established. 相似文献
19.
For the case that the expectation of the response variable Y is correctly specified in the generalized linear model (GLM), under some regular assumptions, we obtain and prove the law of the iterated logarithm and Chung type law of the iterated logarithm for the quasi-maximum likelihood estimator (QMLE) βn in this model. 相似文献
20.
The basic assumption underlying the concept of ranked set sampling is that actual measurement of units is expensive, whereas ranking is cheap. This may not be true in reality in certain cases where ranking may be moderately expensive. In such situations, based on total cost considerations, k-tuple ranked set sampling is known to be a viable alternative, where one selects k units (instead of one) from each ranked set. In this article, we consider estimation of the distribution function based on k-tuple ranked set samples when the cost of selecting and ranking units is not ignorable. We investigate estimation both in the balanced and unbalanced data case. Properties of the estimation procedure in the presence of ranking error are also investigated. Results of simulation studies as well as an application to a real data set are presented to illustrate some of the theoretical findings. 相似文献