首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The results of analyzing experimental data using a parametric model may heavily depend on the chosen model for regression and variance functions, moreover also on a possibly underlying preliminary transformation of the variables. In this paper we propose and discuss a complex procedure which consists in a simultaneous selection of parametric regression and variance models from a relatively rich model class and of Box-Cox variable transformations by minimization of a cross-validation criterion. For this it is essential to introduce modifications of the standard cross-validation criterion adapted to each of the following objectives: 1. estimation of the unknown regression function, 2. prediction of future values of the response variable, 3. calibration or 4. estimation of some parameter with a certain meaning in the corresponding field of application. Our idea of a criterion oriented combination of procedures (which usually if applied, then in an independent or sequential way) is expected to lead to more accurate results. We show how the accuracy of the parameter estimators can be assessed by a “moment oriented bootstrap procedure", which is an essential modification of the “wild bootstrap” of Härdle and Mammen by use of more accurate variance estimates. This new procedure and its refinement by a bootstrap based pivot (“double bootstrap”) is also used for the construction of confidence, prediction and calibration intervals. Programs written in Splus which realize our strategy for nonlinear regression modelling and parameter estimation are described as well. The performance of the selected model is discussed, and the behaviour of the procedures is illustrated, e.g., by an application in radioimmunological assay.  相似文献   

2.
Varying coefficient partially linear models are usually used for longitudinal data analysis, and an interest is mainly to improve efficiency of regression coefficients. By the orthogonality estimation technology and the quadratic inference function method, we propose a new orthogonality-based estimation method to estimate parameter and nonparametric components in varying coefficient partially linear models with longitudinal data. The proposed procedure can separately estimate the parametric and nonparametric components, and the resulting estimators do not affect each other. Under some mild conditions, we establish some asymptotic properties of the resulting estimators. Furthermore, the finite sample performance of the proposed procedure is assessed by some simulation experiments.  相似文献   

3.
Abstract

The objective of this paper is to propose an efficient estimation procedure in a marginal mean regression model for longitudinal count data and to develop a hypothesis test for detecting the presence of overdispersion. We extend the matrix expansion idea of quadratic inference functions to the negative binomial regression framework that entails accommodating both the within-subject correlation and overdispersion issue. Theoretical and numerical results show that the proposed procedure yields a more efficient estimator asymptotically than the one ignoring either the within-subject correlation or overdispersion. When the overdispersion is absent in data, the proposed method might hinder the estimation efficiency in practice, yet the Poisson regression based regression model is fitted to the data sufficiently well. Therefore, we construct the hypothesis test that recommends an appropriate model for the analysis of the correlated count data. Extensive simulation studies indicate that the proposed test can identify the effective model consistently. The proposed procedure is also applied to a transportation safety study and recommends the proposed negative binomial regression model.  相似文献   

4.
In this article we investigate the problem of ascertaining A- and D-optimal designs in a cubic regression model with random coefficients. Our interest lies in estimation of all the parameters or in only those except the intercept term. Assuming the variance ratios to be known, we tabulate D-optimal designs for various combinations of the variance ratios. A-optimality does not pose any new problem in the random coefficients situation.  相似文献   

5.
In this paper the estimation of the unknown parameters is considered in standard growth curve model with special covariance structures. Based on the unbiased estimating equations, some new methods are proposed. The resulting estimators can be expressed in explicit forms. The statistical properties of the proposed estimators are investigated. Some simulation results are presented to compare the performance of the proposed estimator with that of the existing approaches. Finally, these methods are applied in general extended growth curve model with special covariance structures.  相似文献   

6.
In this paper, we study the estimation of the unbalanced panel data partially linear models with a one-way error components structure. A weighted semiparametric least squares estimator (WSLSE) is developed using polynomial spline approximation and least squares. We show that the WSLSE is asymptotically more efficient than the corresponding unweighted estimator for both parametric and nonparametric components of the model. This is a significant improvement over previous results in the literature which showed that the simply weighting technique can only improve the estimation of the parametric component. The asymptotic normalities of the proposed WSLSE are also established.  相似文献   

7.
When studying associations between a functional covariate and scalar response using a functional linear model (FLM), scientific knowledge may indicate possible monotonicity of the unknown parameter curve. In this context, we propose an F-type test of monotonicity, based on a full versus reduced nested model structure, where the reduced model with monotonically constrained parameter curve is nested within an unconstrained FLM. For estimation under the unconstrained FLM, we consider two approaches: penalised least-squares and linear mixed model effects estimation. We use a smooth then monotonise approach to estimate the reduced model, within the null space of monotone parameter curves. A bootstrap procedure is used to simulate the null distribution of the test statistic. We present a simulation study of the power of the proposed test, and illustrate the test using data from a head and neck cancer study.  相似文献   

8.
In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods.  相似文献   

9.
In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13] and propose to further improve it. To achieve the goal, we first reveal that their method is less efficient due to the inappropriate choice of the response variable in their linear regression model. We then propose a new regression model for estimating the residual variance and the total amount of discontinuities simultaneously. In both theory and simulation, we show that the proposed variance estimator has a smaller mean-squared error compared to the existing estimator, whereas the estimation efficiency for the total amount of discontinuities remains unchanged. Finally, we construct a new test procedure for detection of discontinuities using the proposed method; and via simulation studies, we demonstrate that our new test procedure outperforms the existing one in most settings.  相似文献   

10.
Efficient inference for regression models requires that the heteroscedasticity be taken into account. We consider statistical inference under heteroscedasticity in a semiparametric measurement error regression model, in which some covariates are measured with errors. This paper has multiple components. First, we propose a new method for testing the heteroscedasticity. The advantages of the proposed method over the existing ones are that it does not need any nonparametric estimation and does not involve any mismeasured variables. Second, we propose a new two-step estimator for the error variances if there is heteroscedasticity. Finally, we propose a weighted estimating equation-based estimator (WEEBE) for the regression coefficients and establish its asymptotic properties. Compared with existing estimators, the proposed WEEBE is asymptotically more efficient, avoids undersmoothing the regressor functions and requires less restrictions on the observed regressors. Simulation studies show that the proposed test procedure and estimators have nice finite sample performance. A real data set is used to illustrate the utility of our proposed methods.  相似文献   

11.
We regard the simple linear calibration problem where only the response y of the regression line y = β0 + β1 t is observed with errors. The experimental conditions t are observed without error. For the errors of the observations y we assume that there may be some gross errors providing outlying observations. This situation can be modeled by a conditionally contaminated regression model. In this model the classical calibration estimator based on the least squares estimator has an unbounded asymptotic bias. Therefore we introduce calibration estimators based on robust one-step-M-estimators which have a bounded asymptotic bias. For this class of estimators we discuss two problems: The optimal estimators and their corresponding optimal designs. We derive the locally optimal solutions and show that the maximin efficient designs for non-robust estimation and robust estimation coincide.  相似文献   

12.
In this paper, a unified maximum marginal likelihood estimation procedure is proposed for the analysis of right censored data using general partially linear varying-coefficient transformation models (GPLVCTM), which are flexible enough to include many survival models as its special cases. Unknown functional coefficients in the models are approximated by cubic B-spline polynomial. We estimate B-spline coefficients and regression parameters by maximizing marginal likelihood function. One advantage of this procedure is that it is free of both baseline and censoring distribution. Through simulation studies and a real data application (VA data from the Veteran's Administration Lung Cancer Study Clinical Trial), we illustrate that the proposed estimation procedure is accurate, stable and practical.  相似文献   

13.
Polynomials are widely used for fitting models empirically to data. Low-degree polynomials (specifically, degrees 1, 2, and at most 3) have stood the test of time by proving their versatility when it comes to fitting a wide variety of different surface shapes over limited regions of interest. However, when faced with modeling a surface over an experimental region whose boundaries extend beyond some localized neighborhood or limited-sized region of interest, a polynomial of degree 2, or even of degree 3, may not be adequate. For this situation we propose fitting an interaction model which is a reduced form of higher-degree polynomial. Some examples of actual experiments are presented to illustrate the improvement in fit by an interaction model over that of a standard polynomial, even for response surfaces with uncomplicated shapes.  相似文献   

14.
In practice, it is not uncommon to encounter the situation that a discrete response is related to both a functional random variable and multiple real-value random variables whose impact on the response is nonlinear. In this paper, we consider the generalized partial functional linear additive models (GPFLAM) and present the estimation procedure. In GPFLAM, the nonparametric functions are approximated by polynomial splines and the infinite slope function is estimated based on the principal component basis function approximations. We obtain the estimator by maximizing the quasi-likelihood function. We investigate the finite sample properties of the estimation procedure via Monte Carlo simulation studies and illustrate our proposed model by a real data analysis.  相似文献   

15.
In longitudinal studies, an individual may potentially undergo a series of repeated recurrence events. The gap times, which are referred to as the times between successive recurrent events, are typically the outcome variables of interest. Various regression models have been developed in order to evaluate covariate effects on gap times based on recurrence event data. The proportional hazards model, additive hazards model, and the accelerated failure time model are all notable examples. Quantile regression is a useful alternative to the aforementioned models for survival analysis since it can provide great flexibility to assess covariate effects on the entire distribution of the gap time. In order to analyze recurrence gap time data, we must overcome the problem of the last gap time subjected to induced dependent censoring, when numbers of recurrent events exceed one time. In this paper, we adopt the Buckley–James-type estimation method in order to construct a weighted estimation equation for regression coefficients under the quantile model, and develop an iterative procedure to obtain the estimates. We use extensive simulation studies to evaluate the finite-sample performance of the proposed estimator. Finally, analysis of bladder cancer data is presented as an illustration of our proposed methodology.  相似文献   

16.
This paper deals with estimation problems under an extended growth curve model with two hierarchical within-individuals design matrices. The model in cludes the one whose mean structure consists of polynomial growth curves with two different degrees. First we propose certain simple estimators of the mean and covariance parameters which are closely related to the MEE's. Some basic properties of the estimators are given. Simultaneous confidence intervals are constructed, based on the estimators, for each and both of two growth curves. We give asymptotic approximations for the corresponding critical points. A numerical example is also given.  相似文献   

17.
In this paper we consider the statistical analysis of multivariate multiple nonlinear regression models with correlated errors, using Finite Fourier Transforms. Consistency and asymptotic normality of the weighted least squares estimates are established under various conditions on the regressor variables. These conditions involve different types of scalings, and the scaling factors are obtained explicitly for various types of nonlinear regression models including an interesting model which requires the estimation of unknown frequencies. The estimation of frequencies is a classical problem occurring in many areas like signal processing, environmental time series, astronomy and other areas of physical sciences. We illustrate our methodology using two real data sets taken from geophysics and environmental sciences. The data we consider from geophysics are polar motion (which is now widely known as “Chandlers Wobble”), where one has to estimate the drift parameters, the offset parameters and the two periodicities associated with elliptical motion. The data were first analyzed by Arato, Kolmogorov and Sinai who treat it as a bivariate time series satisfying a finite order time series model. They estimate the periodicities using the coefficients of the fitted models. Our analysis shows that the two dominant frequencies are 12 h and 410 days. The second example, we consider is the minimum/maximum monthly temperatures observed at the Antarctic Peninsula (Faraday/Vernadsky station). It is now widely believed that over the past 50 years there is a steady warming in this region, and if this is true, the warming has serious consequences on ecology, marine life, etc. as it can result in melting of ice shelves and glaciers. Our objective here is to estimate any existing temperature trend in the data, and we use the nonlinear regression methodology developed here to achieve that goal.  相似文献   

18.
In this paper we present the construction of robust designs for a possibly misspecified generalized linear regression model when the data are censored. The minimax designs and unbiased designs are found for maximum likelihood estimation in the context of both prediction and extrapolation problems. This paper extends preceding work of robust designs for complete data by incorporating censoring and maximum likelihood estimation. It also broadens former work of robust designs for censored data from others by considering both nonlinearity and much more arbitrary uncertainty in the fitted regression response and by dropping all restrictions on the structure of the regressors. Solutions are derived by a nonsmooth optimization technique analytically and given in full generality. A typical example in accelerated life testing is also demonstrated. We also investigate implementation schemes which are utilized to approximate a robust design having a density. Some exact designs are obtained using an optimal implementation scheme.  相似文献   

19.
In this paper, we propose a robust statistical inference approach for the varying coefficient partially nonlinear models based on quantile regression. A three-stage estimation procedure is developed to estimate the parameter and coefficient functions involved in the model. Under some mild regularity conditions, the asymptotic properties of the resulted estimators are established. Some simulation studies are conducted to evaluate the finite performance as well as the robustness of our proposed quantile regression method versus the well known profile least squares estimation procedure. Moreover, the Boston housing price data is given to further illustrate the application of the new method.  相似文献   

20.
Collapsibility with respect to a measure of association implies that the measure of association can be obtained from the marginal model. We first discuss model collapsibility and collapsibility with respect to regression coefficients for linear regression models. For parallel regression models, we give simple and different proofs of some of the known results and obtain also certain new results. For random coefficient regression models, we define (average) AA-collapsibility and obtain conditions under which it holds. We consider Poisson regression and logistic regression models also, and derive conditions for collapsibility and AA-collapsibility, respectively. These results generalize some of the results available in the literature. Some suitable examples are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号