首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In official statistics, when a file of microdata must be delivered to external users, it is very difficult to propose them a file where missing values has been treated by multiple imputations. In order to overcome this difficulty, we propose a method of single imputation for qualitative data that respect numerous constraints. The imputation is balanced on totals previously estimated; editing rules can be respected; the imputation is random, but the totals are not affected by an imputation variance.  相似文献   

2.
Summary.  We propose to use calibrated imputation to compensate for missing values. This technique consists of finding final imputed values that are as close as possible to preliminary imputed values and are calibrated to satisfy constraints. Preliminary imputed values, potentially justified by an imputation model, are obtained through deterministic single imputation. Using appropriate constraints, the resulting imputed estimator is asymptotically unbiased for estimation of linear population parameters such as domain totals. A quasi-model-assisted approach is considered in the sense that inferences do not depend on the validity of an imputation model and are made with respect to the sampling design and a non-response model. An imputation model may still be used to generate imputed values and thus to improve the efficiency of the imputed estimator. This approach has the characteristic of handling naturally the situation where more than one imputation method is used owing to missing values in the variables that are used to obtain imputed values. We use the Taylor linearization technique to obtain a variance estimator under a general non-response model. For the logistic non-response model, we show that ignoring the effect of estimating the non-response model parameters leads to overestimating the variance of the imputed estimator. In practice, the overestimation is expected to be moderate or even negligible, as shown in a simulation study.  相似文献   

3.
In clinical trials, missing data commonly arise through nonadherence to the randomized treatment or to study procedure. For trials in which recurrent event endpoints are of interests, conventional analyses using the proportional intensity model or the count model assume that the data are missing at random, which cannot be tested using the observed data alone. Thus, sensitivity analyses are recommended. We implement the control‐based multiple imputation as sensitivity analyses for the recurrent event data. We model the recurrent event using a piecewise exponential proportional intensity model with frailty and sample the parameters from the posterior distribution. We impute the number of events after dropped out and correct the variance estimation using a bootstrap procedure. We apply the method to an application of sitagliptin study.  相似文献   

4.
Marginal imputation, that consists of imputing items separately, generally leads to biased estimators of bivariate parameters such as finite population coefficients of correlation. To overcome this problem, two main approaches have been considered in the literature: the first consists of using customary imputation methods such as random hot‐deck imputation and adjusting for the bias at the estimation stage. This approach was studied in Skinner & Rao 2002 . In this paper, we extend the results of Skinner & Rao 2002 to the case of arbitrary sampling designs and three variants of random hot‐deck imputation. The second approach consists of using an imputation method, which preserves the relationship between variables. Shao & Wang 2002 proposed a joint random regression imputation procedure that succeeds in preserving the relationships between two study variables. One drawback of the Shao–Wang procedure is that it suffers from an additional variability (called the imputation variance) due to the random selection of residuals, resulting in potentially inefficient estimators. Following Chauvet, Deville, & Haziza 2011 , we propose a fully efficient version of the Shao–Wang procedure that preserves the relationship between two study variables, while virtually eliminating the imputation variance. Results of a simulation study support our findings. An application using data from the Workplace and Employees Survey is also presented. The Canadian Journal of Statistics 40: 124–149; 2012 © 2011 Statistical Society of Canada  相似文献   

5.
Frequently in clinical and epidemiologic studies, the event of interest is recurrent (i.e., can occur more than once per subject). When the events are not of the same type, an analysis which accounts for the fact that events fall into different categories will often be more informative. Often, however, although event times may always be known, information through which events are categorized may potentially be missing. Complete‐case methods (whose application may require, for example, that events be censored when their category cannot be determined) are valid only when event categories are missing completely at random. This assumption is rather restrictive. The authors propose two multiple imputation methods for analyzing multiple‐category recurrent event data under the proportional means/rates model. The use of a proper or improper imputation technique distinguishes the two approaches. Both methods lead to consistent estimation of regression parameters even when the missingness of event categories depends on covariates. The authors derive the asymptotic properties of the estimators and examine their behaviour in finite samples through simulation. They illustrate their approach using data from an international study on dialysis.  相似文献   

6.
The authors study the estimation of domain totals and means under survey‐weighted regression imputation for missing items. They use two different approaches to inference: (i) design‐based with uniform response within classes; (ii) model‐assisted with ignorable response and an imputation model. They show that the imputed domain estimators are biased under (i) but approximately unbiased under (ii). They obtain a bias‐adjusted estimator that is approximately unbiased under (i) or (ii). They also derive linearization variance estimators. They report the results of a simulation study on the bias ratio and efficiency of alternative estimators, including a complete case estimator that requires the knowledge of response indicators.  相似文献   

7.
A simple approach for analyzing longitudinally measured biomarkers is to calculate summary measures such as the area under the curve (AUC) for each individual and then compare the mean AUC between treatment groups using methods such as t test. This two-step approach is difficult to implement when there are missing data since the AUC cannot be directly calculated for individuals with missing measurements. Simple methods for dealing with missing data include the complete case analysis and imputation. A recent study showed that the estimated mean AUC difference between treatment groups based on the linear mixed model (LMM), rather than on individually calculated AUCs by simple imputation, has negligible bias under random missing assumptions and only small bias when missing is not at random. However, this model assumes the outcome to be normally distributed, which is often violated in biomarker data. In this paper, we propose to use a LMM on log-transformed biomarkers, based on which statistical inference for the ratio, rather than difference, of AUC between treatment groups is provided. The proposed method can not only handle the potential baseline imbalance in a randomized trail but also circumvent the estimation of the nuisance variance parameters in the log-normal model. The proposed model is applied to a recently completed large randomized trial studying the effect of nicotine reduction on biomarker exposure of smokers.  相似文献   

8.
Summary.  Statistical agencies that own different databases on overlapping subjects can benefit greatly from combining their data. These benefits are passed on to secondary data analysts when the combined data are disseminated to the public. Sometimes combining data across agencies or sharing these data with the public is not possible: one or both of these actions may break promises of confidentiality that have been given to data subjects. We describe an approach that is based on two stages of multiple imputation that facilitates data sharing and dissemination under restrictions of confidentiality. We present new inferential methods that properly account for the uncertainty that is caused by the two stages of imputation. We illustrate the approach by using artificial and genuine data.  相似文献   

9.
A bioequivalence test is to compare bioavailability parameters, such as the maximum observed concentration (Cmax) or the area under the concentration‐time curve, for a test drug and a reference drug. During the planning of a bioequivalence test, it requires an assumption about the variance of Cmax or area under the concentration‐time curve for the estimation of sample size. Since the variance is unknown, current 2‐stage designs use variance estimated from stage 1 data to determine the sample size for stage 2. However, the estimation of variance with the stage 1 data is unstable and may result in too large or too small sample size for stage 2. This problem is magnified in bioequivalence tests with a serial sampling schedule, by which only one sample is collected from each individual and thus the correct assumption of variance becomes even more difficult. To solve this problem, we propose 3‐stage designs. Our designs increase sample sizes over stages gradually, so that extremely large sample sizes will not happen. With one more stage of data, the power is increased. Moreover, the variance estimated using data from both stages 1 and 2 is more stable than that using data from stage 1 only in a 2‐stage design. These features of the proposed designs are demonstrated by simulations. Testing significance levels are adjusted to control the overall type I errors at the same level for all the multistage designs.  相似文献   

10.
Donor imputation is frequently used in surveys. However, very few variance estimation methods that take into account donor imputation have been developed in the literature. This is particularly true for surveys with high sampling fractions using nearest donor imputation, often called nearest‐neighbour imputation. In this paper, the authors develop a variance estimator for donor imputation based on the assumption that the imputed estimator of a domain total is approximately unbiased under an imputation model; that is, a model for the variable requiring imputation. Their variance estimator is valid, irrespective of the magnitude of the sampling fractions and the complexity of the donor imputation method, provided that the imputation model mean and variance are accurately estimated. They evaluate its performance in a simulation study and show that nonparametric estimation of the model mean and variance via smoothing splines brings robustness with respect to imputation model misspecifications. They also apply their variance estimator to real survey data when nearest‐neighbour imputation has been used to fill in the missing values. The Canadian Journal of Statistics 37: 400–416; 2009 © 2009 Statistical Society of Canada  相似文献   

11.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

12.
In some randomized (drug versus placebo) clinical trials, the estimand of interest is the between‐treatment difference in population means of a clinical endpoint that is free from the confounding effects of “rescue” medication (e.g., HbA1c change from baseline at 24 weeks that would be observed without rescue medication regardless of whether or when the assigned treatment was discontinued). In such settings, a missing data problem arises if some patients prematurely discontinue from the trial or initiate rescue medication while in the trial, the latter necessitating the discarding of post‐rescue data. We caution that the commonly used mixed‐effects model repeated measures analysis with the embedded missing at random assumption can deliver an exaggerated estimate of the aforementioned estimand of interest. This happens, in part, due to implicit imputation of an overly optimistic mean for “dropouts” (i.e., patients with missing endpoint data of interest) in the drug arm. We propose an alternative approach in which the missing mean for the drug arm dropouts is explicitly replaced with either the estimated mean of the entire endpoint distribution under placebo (primary analysis) or a sequence of increasingly more conservative means within a tipping point framework (sensitivity analysis); patient‐level imputation is not required. A supplemental “dropout = failure” analysis is considered in which a common poor outcome is imputed for all dropouts followed by a between‐treatment comparison using quantile regression. All analyses address the same estimand and can adjust for baseline covariates. Three examples and simulation results are used to support our recommendations.  相似文献   

13.
For multivariate survival data, we study the generalized method of moments (GMM) approach to estimation and inference based on the marginal additive hazards model. We propose an efficient iterative algorithm using closed‐form solutions, which dramatically reduces the computational burden. Asymptotic normality of the proposed estimators is established, and the corresponding variance–covariance matrix can be consistently estimated. Inference procedures are derived based on the asymptotic chi‐squared distribution of the GMM objective function. Simulation studies are conducted to empirically examine the finite sample performance of the proposed method, and a real data example from a dental study is used for illustration.  相似文献   

14.
We propose an efficient and robust method for variance function estimation in semiparametric longitudinal data analysis. The method utilizes a local log‐linear approximation for the variance function and adopts a generalized estimating equation approach to account for within subject correlations. We show theoretically and empirically that our method outperforms estimators using working independence that ignores the correlations. The Canadian Journal of Statistics 39: 656–670; 2011. © 2011 Statistical Society of Canada  相似文献   

15.
Summary.  The paper develops a data augmentation method to estimate the distribution function of a variable, which is partially observed, under a non-ignorable missing data mechanism, and where surrogate data are available. An application to the estimation of hourly pay distributions using UK Labour Force Survey data provides the main motivation. In addition to considering a standard parametric data augmentation method, we consider the use of hot deck imputation methods as part of the data augmentation procedure to improve the robustness of the method. The method proposed is compared with standard methods that are based on an ignorable missing data mechanism, both in a simulation study and in the Labour Force Survey application. The focus is on reducing bias in point estimation, but variance estimation using multiple imputation is also considered briefly.  相似文献   

16.
A cure rate model is a survival model incorporating the cure rate with the assumption that the population contains both uncured and cured individuals. It is a powerful statistical tool for prognostic studies, especially in cancer. The cure rate is important for making treatment decisions in clinical practice. The proportional hazards (PH) cure model can predict the cure rate for each patient. This contains a logistic regression component for the cure rate and a Cox regression component to estimate the hazard for uncured patients. A measure for quantifying the predictive accuracy of the cure rate estimated by the Cox PH cure model is required, as there has been a lack of previous research in this area. We used the Cox PH cure model for the breast cancer data; however, the area under the receiver operating characteristic curve (AUC) could not be estimated because many patients were censored. In this study, we used imputation‐based AUCs to assess the predictive accuracy of the cure rate from the PH cure model. We examined the precision of these AUCs using simulation studies. The results demonstrated that the imputation‐based AUCs were estimable and their biases were negligibly small in many cases, although ordinary AUC could not be estimated. Additionally, we introduced the bias‐correction method of imputation‐based AUCs and found that the bias‐corrected estimate successfully compensated the overestimation in the simulation studies. We also illustrated the estimation of the imputation‐based AUCs using breast cancer data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Measurement error, the difference between a measured (observed) value of quantity and its true value, is perceived as a possible source of estimation bias in many surveys. To correct for such bias, a validation sample can be used in addition to the original sample for adjustment of measurement error. Depending on the type of validation sample, we can either use the internal calibration approach or the external calibration approach. Motivated by Korean Longitudinal Study of Aging (KLoSA), we propose a novel application of fractional imputation to correct for measurement error in the analysis of survey data. The proposed method is to create imputed values of the unobserved true variables, which are mis-measured in the main study, by using validation subsample. Furthermore, the proposed method can be directly applicable when the measurement error model is a mixture distribution. Variance estimation using Taylor linearization is developed. Results from a limited simulation study are also presented.  相似文献   

18.
Much of the small‐area estimation literature focuses on population totals and means. However, users of survey data are often interested in the finite‐population distribution of a survey variable and in the measures (e.g. medians, quartiles, percentiles) that characterize the shape of this distribution at the small‐area level. In this paper we propose a model‐based direct estimator (MBDE, Chandra and Chambers) of the small‐area distribution function. The MBDE is defined as a weighted sum of sample data from the area of interest, with weights derived from the calibrated spline‐based estimate of the finite‐population distribution function introduced by Harms and Duchesne, under an appropriately specified regression model with random area effects. We also discuss the mean squared error estimation of the MBDE. Monte Carlo simulations based on both simulated and real data sets show that the proposed MBDE and its associated mean squared error estimator perform well when compared with alternative estimators of the area‐specific finite‐population distribution function.  相似文献   

19.
The analysis of time‐to‐event data typically makes the censoring at random assumption, ie, that—conditional on covariates in the model—the distribution of event times is the same, whether they are observed or unobserved (ie, right censored). When patients who remain in follow‐up stay on their assigned treatment, then analysis under this assumption broadly addresses the de jure, or “while on treatment strategy” estimand. In such cases, we may well wish to explore the robustness of our inference to more pragmatic, de facto or “treatment policy strategy,” assumptions about the behaviour of patients post‐censoring. This is particularly the case when censoring occurs because patients change, or revert, to the usual (ie, reference) standard of care. Recent work has shown how such questions can be addressed for trials with continuous outcome data and longitudinal follow‐up, using reference‐based multiple imputation. For example, patients in the active arm may have their missing data imputed assuming they reverted to the control (ie, reference) intervention on withdrawal. Reference‐based imputation has two advantages: (a) it avoids the user specifying numerous parameters describing the distribution of patients' postwithdrawal data and (b) it is, to a good approximation, information anchored, so that the proportion of information lost due to missing data under the primary analysis is held constant across the sensitivity analyses. In this article, we build on recent work in the survival context, proposing a class of reference‐based assumptions appropriate for time‐to‐event data. We report a simulation study exploring the extent to which the multiple imputation estimator (using Rubin's variance formula) is information anchored in this setting and then illustrate the approach by reanalysing data from a randomized trial, which compared medical therapy with angioplasty for patients presenting with angina.  相似文献   

20.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号