首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study minimum contrast estimation for parametric stationary determinantal point processes. These processes form a useful class of models for repulsive (or regular, or inhibitive) point patterns and are already applied in numerous statistical applications. Our main focus is on minimum contrast methods based on the Ripley's K‐function or on the pair correlation function. Strong consistency and asymptotic normality of theses procedures are proved under general conditions that only concern the existence of the process and its regularity with respect to the parameters. A key ingredient of the proofs is the recently established Brillinger mixing property of stationary determinantal point processes. This work may be viewed as a complement to the study of Y. Guan and M. Sherman who establish the same kind of asymptotic properties for a large class of Cox processes, which in turn are models for clustering (or aggregation).  相似文献   

2.
Point process models are a natural approach for modelling data that arise as point events. In the case of Poisson counts, these may be fitted easily as a weighted Poisson regression. Point processes lack the notion of sample size. This is problematic for model selection, because various classical criteria such as the Bayesian information criterion (BIC) are a function of the sample size, n, and are derived in an asymptotic framework where n tends to infinity. In this paper, we develop an asymptotic result for Poisson point process models in which the observed number of point events, m, plays the role that sample size does in the classical regression context. Following from this result, we derive a version of BIC for point process models, and when fitted via penalised likelihood, conditions for the LASSO penalty that ensure consistency in estimation and the oracle property. We discuss challenges extending these results to the wider class of Gibbs models, of which the Poisson point process model is a special case.  相似文献   

3.
A time series is said to be nearly nonstationary if some of its characteristic roots are close to the unit circle. For a seasonal time series, such a notion of near-nonstationarity is studied in a double-array setting. This approach not only furnishes a natural transition between stationarity and nonstationarity, but also unifies the corresponding asymptotic theories in a seasonal-time-series context. The general theory is expressed in terms of functionals of independent diffusion processes. The asymptotic results have applications to estimation and testing in a nearly nonstationary situation and serve as a useful alternative to the common practice of seasonal adjustment.  相似文献   

4.
We establish a central limit theorem for multivariate summary statistics of nonstationary α‐mixing spatial point processes and a subsampling estimator of the covariance matrix of such statistics. The central limit theorem is crucial for establishing asymptotic properties of estimators in statistics for spatial point processes. The covariance matrix subsampling estimator is flexible and model free. It is needed, for example, to construct confidence intervals and ellipsoids based on asymptotic normality of estimators. We also provide a simulation study investigating an application of our results to estimating functions.  相似文献   

5.
We propose a flexible nonparametric estimation of a variance function from a one-dimensional process where the process errors are nonstationary and correlated. Due to nonstationarity a local variogram is defined, and its asymptotic properties are derived. We include a bandwidth selection method for smoothing taking into account the correlations in the errors. We compare the proposed difference-based nonparametric approach with Anderes and Stein(2011)’s local-likelihood approach. Our method has a smaller integrated MSE, easily fixes the boundary bias, and requires far less computing time than the likelihood-based method.  相似文献   

6.
Abstract. General autoregressive moving average (ARMA) models extend the traditional ARMA models by removing the assumptions of causality and invertibility. The assumptions are not required under a non‐Gaussian setting for the identifiability of the model parameters in contrast to the Gaussian setting. We study M‐estimation for general ARMA processes with infinite variance, where the distribution of innovations is in the domain of attraction of a non‐Gaussian stable law. Following the approach taken by Davis et al. (1992) and Davis (1996) , we derive a functional limit theorem for random processes based on the objective function, and establish asymptotic properties of the M‐estimator. We also consider bootstrapping the M‐estimator and extend the results of Davis & Wu (1997) to the present setting so that statistical inferences are readily implemented. Simulation studies are conducted to evaluate the finite sample performance of the M‐estimation and bootstrap procedures. An empirical example of financial time series is also provided.  相似文献   

7.
The paper considers vector ARMA processes with nonstationary innovations. It is suggested that this class of models provide a very efficient framework for nonstationary problems. A generalization of the Yule-Walker equations relating the underlying process is obtained. Identification procedures are discussed. The associated prediction problem is solved using the Hilbert space approach.  相似文献   

8.
Stochastic processes related to some generalized U-statistics (with especial emphasis on the Wilcoxon-Mann-Whitney (WMW-) statistic), under progressive right censoring, are considered for prediction purposes. Their weak convergence results are incorporated in the study of the asymptotic properties of the predictors. The form of the estimable parameter as a function of the truncation point is studied for the WMW case for some typical distributions and the theoretical results are supplemented by simulated ones.  相似文献   

9.
In this paper we investigate several tests for the hypothesis of a parametric form of the error distribution in the common linear and non‐parametric regression model, which are based on empirical processes of residuals. It is well known that tests in this context are not asymptotically distribution‐free and the parametric bootstrap is applied to deal with this problem. The performance of the resulting bootstrap test is investigated from an asymptotic point of view and by means of a simulation study. The results demonstrate that even for moderate sample sizes the parametric bootstrap provides a reliable and easy accessible solution to the problem of goodness‐of‐fit testing of assumptions regarding the error distribution in linear and non‐parametric regression models.  相似文献   

10.
We consider observational studies in pregnancy where the outcome of interest is spontaneous abortion (SAB). This at first sight is a binary ‘yes’ or ‘no’ variable, albeit there is left truncation as well as right-censoring in the data. Women who do not experience SAB by gestational week 20 are ‘cured’ from SAB by definition, that is, they are no longer at risk. Our data is different from the common cure data in the literature, where the cured subjects are always right-censored and not actually observed to be cured. We consider a commonly used cure rate model, with the likelihood function tailored specifically to our data. We develop a conditional nonparametric maximum likelihood approach. To tackle the computational challenge we adopt an EM algorithm making use of “ghost copies” of the data, and a closed form variance estimator is derived. Under suitable assumptions, we prove the consistency of the resulting estimator which involves an unbounded cumulative baseline hazard function, as well as the asymptotic normality. Simulation results are carried out to evaluate the finite sample performance. We present the analysis of the motivating SAB study to illustrate the advantages of our model addressing both occurrence and timing of SAB, as compared to existing approaches in practice.  相似文献   

11.
The paper considers high‐frequency sampled multivariate continuous‐time autoregressive moving average (MCARMA) models and derives the asymptotic behaviour of the sample autocovariance function to a normal random matrix. Moreover, we obtain the asymptotic behaviour of the cross‐covariances between different components of the model. We will see that the limit distribution of the sample autocovariance function has a similar structure in the continuous‐time and in the discrete‐time model. As a special case, we consider a CARMA (one‐dimensional MCARMA) process. For a CARMA process, we prove Bartlett's formula for the sample autocorrelation function. Bartlett's formula has the same form in both models; only the sums in the discrete‐time model are exchanged by integrals in the continuous‐time model. Finally, we present limit results for multivariate MA processes as well, which are not known in this generality in the multivariate setting yet.  相似文献   

12.
This paper overviews some recent developments in panel data asymptotics, concentrating on the nonstationary panel case and gives a new result for models with individual effects. Underlying recent theory are asymptotics for multi-indexed processes in which both indexes may pass to infinity. We review some of the new limit theory that has been developed, show how it can be applied and give a new interpretation of individual effects in nonstationary panel data. Fundamental to the interpretation of much of the asymptotics is the concept of a panel regression coefficient which measures the long run average relation across a section of the panel. This concept is analogous to the statistical interpretation of the coefficient in a classical regression relation. A variety of nonstationary panel data models are discussed and the paper reviews the asymptotic properties of estimators in these various models. Some recent developments in panel unit root tests and stationary dynamic panel regression models are also reviewed.  相似文献   

13.
Nonstationary panel data analysis: an overview of some recent developments   总被引:2,自引:0,他引:2  
This paper overviews some recent developments in panel data asymptotics, concentrating on the nonstationary panel case and gives a new result for models with individual effects. Underlying recent theory are asymptotics for multi-indexed processes in which both indexes may pass to infinity. We review some of the new limit theory that has been developed, show how it can be applied and give a new interpretation of individual effects in nonstationary panel data. Fundamental to the interpretation of much of the asymptotics is the concept of a panel regression coefficient which measures the long run average relation across a section of the panel. This concept is analogous to the statistical interpretation of the coefficient in a classical regression relation. A variety of nonstationary panel data models are discussed and the paper reviews the asymptotic properties of estimators in these various models. Some recent developments in panel unit root tests and stationary dynamic panel regression models are also reviewed.  相似文献   

14.
Linear vector autoregressive (VAR) models where the innovations could be unconditionally heteroscedastic are considered. The volatility structure is deterministic and quite general, including breaks or trending variances as special cases. In this framework we propose ordinary least squares (OLS), generalized least squares (GLS) and adaptive least squares (ALS) procedures. The GLS estimator requires the knowledge of the time-varying variance structure while in the ALS approach the unknown variance is estimated by kernel smoothing with the outer product of the OLS residual vectors. Different bandwidths for the different cells of the time-varying variance matrix are also allowed. We derive the asymptotic distribution of the proposed estimators for the VAR model coefficients and compare their properties. In particular we show that the ALS estimator is asymptotically equivalent to the infeasible GLS estimator. This asymptotic equivalence is obtained uniformly with respect to the bandwidth(s) in a given range and hence justifies data-driven bandwidth rules. Using these results we build Wald tests for the linear Granger causality in mean which are adapted to VAR processes driven by errors with a nonstationary volatility. It is also shown that the commonly used standard Wald test for the linear Granger causality in mean is potentially unreliable in our framework (incorrect level and lower asymptotic power). Monte Carlo experiments illustrate the use of the different estimation approaches for the analysis of VAR models with time-varying variance innovations.  相似文献   

15.
Junbum Lee 《Statistics》2017,51(5):949-968
In this paper, general quadratic forms of nonstationary, α-mixing time series are considered. Under mixing and moment assumptions, asymptotically normality of these forms are derived. These results do not assume that the variance of the generalized quadratic form has a limit, thus allowing for general types of nonstationarity. However, without well-defined limits, it is not possible to understand the differences in sampling properties of quadratic forms of nonstationary and stationary processes. To understand these differences, the nonstationary process is placed within the locally stationary framework. Under the assumption that the nonstationary process is locally stationary the asymptotic expectation and variance of the weighted sample covariance of the discrete Fourier transforms (an important class of quadratic forms) is derived and shown to be very different to its stationary counterpart.  相似文献   

16.
We find the asymptotic distribution of the multi‐dimensional multi‐scale and kernel estimators for high‐frequency financial data with microstructure. Sampling times are allowed to be asynchronous and endogenous. In the process, we show that the classes of multi‐scale and kernel estimators for smoothing noise perturbation are asymptotically equivalent in the sense of having the same asymptotic distribution for corresponding kernel and weight functions. The theory leads to multi‐dimensional stable central limit theorems and feasible versions. Hence, they allow to draw statistical inference for a broad class of multivariate models, which paves the way to tests and confidence intervals in risk measurement for arbitrary portfolios composed of high‐frequently observed assets. As an application, we enhance the approach to construct a test for investigating hypotheses that correlated assets are independent conditional on a common factor.  相似文献   

17.
We consider the right truncated exponential distribution where the truncation point is unknown and show that the ML equation has a unique solution over an extended parameter space. In the case of the estimation of the truncation point T we show that the asymptotic distribution of the MLE is not centered at T. A modified MLE is introduced which outperforms all other considered estimators including the minimum variance unbiased estimator. Asymptotic as well as small sample properties of different estimators are investigated and compared. The truncated exponential distribution has an increasing failure rate, ideally suited for use as a survival distribution for biological and industrial data.  相似文献   

18.
In incident cohort studies, it is common to include subjects who have experienced a certain event within a calendar time window. For all the included individuals, the time of the previous events is retrospectively confirmed and the occurrence of subsequent events is observed during the follow-up periods. During the follow-up periods, subjects may undergo three successive events. Since the second/third duration process becomes observable only if the first/second event has occurred, the data is subject to double truncation and right censoring. We consider two cases: the case when the first event time is subject to double truncation and the case when the second event time is subject to double truncation. Using the inverse-probability-weighted approach, we propose nonparametric and semiparametric estimators for the estimation of the joint survival function of three successive duration times. We establish the asymptotic properties of the proposed estimators and conduct a simulation study to investigate the finite sample properties of the proposed estimators.  相似文献   

19.
We consider the problem of parameter estimation for inhomogeneous space‐time shot‐noise Cox point processes. We explore the possibility of using a stepwise estimation method and dimensionality‐reducing techniques to estimate different parts of the model separately. We discuss the estimation method using projection processes and propose a refined method that avoids projection to the temporal domain. This remedies the main flaw of the method using projection processes – possible overlapping in the projection process of clusters, which are clearly separated in the original space‐time process. This issue is more prominent in the temporal projection process where the amount of information lost by projection is higher than in the spatial projection process. For the refined method, we derive consistency and asymptotic normality results under the increasing domain asymptotics and appropriate moment and mixing assumptions. We also present a simulation study that suggests that cluster overlapping is successfully overcome by the refined method.  相似文献   

20.
Abstract.  Several testing procedures are proposed that can detect change-points in the error distribution of non-parametric regression models. Different settings are considered where the change-point either occurs at some time point or at some value of the covariate. Fixed as well as random covariates are considered. Weak convergence of the suggested difference of sequential empirical processes based on non-parametrically estimated residuals to a Gaussian process is proved under the null hypothesis of no change-point. In the case of testing for a change in the error distribution that occurs with increasing time in a model with random covariates the test statistic is asymptotically distribution free and the asymptotic quantiles can be used for the test. This special test statistic can also detect a change in the regression function. In all other cases the asymptotic distribution depends on unknown features of the data-generating process and a bootstrap procedure is proposed in these cases. The small sample performances of the proposed tests are investigated by means of a simulation study and the tests are applied to a data example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号