首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian hierarchical modeling with Gaussian process random effects provides a popular approach for analyzing point-referenced spatial data. For large spatial data sets, however, generic posterior sampling is infeasible due to the extremely high computational burden in decomposing the spatial correlation matrix. In this paper, we propose an efficient algorithm—the adaptive griddy Gibbs (AGG) algorithm—to address the computational issues with large spatial data sets. The proposed algorithm dramatically reduces the computational complexity. We show theoretically that the proposed method can approximate the real posterior distribution accurately. The sufficient number of grid points for a required accuracy has also been derived. We compare the performance of AGG with that of the state-of-the-art methods in simulation studies. Finally, we apply AGG to spatially indexed data concerning building energy consumption.  相似文献   

2.
ABSTRACT

In this paper, we propose a sampling design termed as multiple-start balanced modified systematic sampling (MBMSS), which involves the supplementation of two or more balanced modified systematic samples, thus permitting us to obtain an unbiased estimate of the associated sampling variance. There are five cases for this design and in the presence of linear trend only one of these cases is optimal. To further improve results for the other cases, we propose an estimator that removes linear trend by applying weights to the first and last sampling units of the selected balanced modified systematic samples and is thus termed as the MBMSS with end corrections (MBMSSEC) estimator. By assuming a linear trend model averaged over a super-population model, we will compare the expected mean square errors (MSEs) of the proposed sample means, to that of simple random sampling (SRS), linear systematic sampling (LSS), stratified random sampling (STR), multiple-start linear systematic sampling (MLSS), and other modified MLSS estimators. As a result, MBMSS is optimal for one of the five possible cases, while the MBMSSEC estimator is preferred for three of the other four cases.  相似文献   

3.
When auxiliary information is available at the design stage, samples may be selected by means of balanced sampling. The variance of the Horvitz-Thompson estimator is then reduced, since it is approximately given by that of the residuals of the variable of interest on the balancing variables. In this paper, a method for computing optimal inclusion probabilities for balanced sampling on given auxiliary variables is studied. We show that the method formerly suggested by Tillé and Favre (2005) enables the computation of inclusion probabilities that lead to a decrease in variance under some conditions on the set of balancing variables. A disadvantage is that the target optimal inclusion probabilities depend on the variable of interest. If the needed quantities are unknown at the design stage, we propose to use estimates instead (e.g., arising from a previous wave of the survey). A limited simulation study suggests that, under some conditions, our method performs better than the method of Tillé and Favre (2005).  相似文献   

4.
A new method for sampling from a finite population that is spread in one, two or more dimensions is presented. Weights are used to create strong negative correlations between the inclusion indicators of nearby units. The method can be used to produce unequal probability samples that are well spread over the population in every dimension, without any spatial stratification. Since the method is very general there are numerous possible applications, especially in sampling of natural resources where spatially balanced sampling has proven to be efficient. Two examples show that the method gives better estimates than other commonly used designs.  相似文献   

5.
Recursive computation of inclusion probabilities in ranked-set sampling   总被引:1,自引:0,他引:1  
We derive recursive algorithms for computing first-order and second-order inclusion probabilities for ranked-set sampling from a finite population. These algorithms make it practical to compute inclusion probabilities even for relatively large sample and population sizes. As an application, we use the inclusion probabilities to examine the performance of Horvitz-Thompson estimators under different varieties of balanced ranked-set sampling. We find that it is only for balanced Level 2 sampling that the Horvitz-Thompson estimator can be relied upon to outperform the simple random sampling mean estimator.  相似文献   

6.
This paper combines optimal spatial sampling designs with geostatistical analysis of functional data. We propose a methodology and design criteria to find the set of spatial locations that minimizes the variance of the spatial functional prediction at unsampled sites for three functional predictors: ordinary kriging, simple kriging and simple cokriging. The last one is a modification of an existing predictor that uses ordinary cokriging based on the basis coefficients. Instead, we propose to use a simple cokriging predictor with the scores resulting from a representation of the functional data with the empirical functional principal components, allowing to remove restrictions and complexity of the covariance models and constraints on the estimation procedure. The methodology is applied to a network of air quality in Bogotá city, Colombia.  相似文献   

7.
Many methods based on ranked set sampling (RSS) assume perfect ranking of the samples. Here, by using the data measured by a balanced RSS scheme, we propose a nonparametric test for the assumption of perfect ranking. The test statistic that we use formally corresponds to the Jonckheere-Terpstra-type test statistic. We show formal relations of the proposed test for perfect ranking to other methods proposed recently in the literature. Through an empirical power study, we demonstrate that the proposed method performs favorably compared to many of its competitors.  相似文献   

8.
A computational problem in many fields is to evaluate multiple integrals and expectations simultaneously. Consider probability distributions with unnormalized density functions indexed by parameters on a 2-dimensional grid, and assume that samples are simulated from distributions on a subgrid. Examples of such unnormalized density functions include the observed-data likelihoods in the presence of missing data and the prior times the likelihood in Bayesian inference. There are various methods using a single sample only or multiple samples jointly to compute each integral. Path sampling seems a compromise, using samples along a 1-dimensional path to compute each integral. However, different choices of the path lead to different estimators, which should ideally be identical. We propose calibrated estimators by the method of control variates to exploit such constraints for variance reduction. We also propose biquadratic interpolation to approximate integrals with parameters outside the subgrid, consistently with the calibrated estimators on the subgrid. These methods can be extended to compute differences of expectations through an auxiliary identity for path sampling. Furthermore, we develop stepwise bridge-sampling methods in parallel but complementary to path sampling. In three simulation studies, the proposed methods lead to substantially reduced mean squared errors compared with existing methods.  相似文献   

9.
Parallel multivariate slice sampling   总被引:2,自引:0,他引:2  
Slice sampling provides an easily implemented method for constructing a Markov chain Monte Carlo (MCMC) algorithm. However, slice sampling has two major drawbacks: (i) it requires repeated evaluation of likelihoods for each update, which can make it impractical when evaluations are expensive or as the number of evaluations grows (geometrically) with the dimension of the slice sampler, and (ii) since it can be challenging to construct multivariate updates, the updates are typically univariate, which often results in slow mixing samplers. We propose an approach to multivariate slice sampling that naturally lends itself to a parallel implementation. Our approach takes advantage of recent advances in computer architectures, for instance, the newest generation of graphics cards can execute roughly 30,000 threads simultaneously. We demonstrate that it is possible to construct a multivariate slice sampler that has good mixing properties and is efficient in terms of computing time. The contributions of this article are therefore twofold. We study approaches for constructing a multivariate slice sampler, and we show how parallel computing can be useful for making MCMC algorithms computationally efficient. We study various implementations of our algorithm in the context of real and simulated data.  相似文献   

10.
We propose an improved class of exponential ratio type estimators for coefficient of variation (CV) of a finite population in simple and stratified random sampling using two auxiliary variables under two-phase sampling scheme. We examine the properties of the proposed estimators based on first order of approximation. The proposed class of estimators is more efficient than the usual sample CV estimator, ratio estimator, exponential ratio estimator, usual difference estimator and modified difference type estimator. We also use real data sets for numerical comparisons.  相似文献   

11.
Neoteric ranked set sampling (NRSS) is a recently developed sampling plan, derived from the well-known ranked set sampling (RSS) scheme. It has already been proved that NRSS provides more efficient estimators for population mean and variance compared to RSS and other sampling designs based on ranked sets. In this work, we propose and evaluate the performance of some two-stage sampling designs based on NRSS. Five different sampling schemes are proposed. Through an extensive Monte Carlo simulation study, we verified that all proposed sampling designs outperform RSS, NRSS, and the original double RSS design, producing estimators for the population mean with a lower mean square error. Furthermore, as with NRSS, two-stage NRSS estimators present some bias for asymmetric distributions. We complement the study with a discussion on the relative performance of the proposed estimators. Moreover, an additional simulation based on data of the diameter and height of pine trees is presented.  相似文献   

12.
Hedayat et al. [Sampling plans excluding contiguous units. J. Statist. Plann. Inference 19, 159–170, Designs in survey sampling avoiding contiguous units. In: Krishnaiah, P.R., Rao, C.R. (Eds.), Handbook of Statistics, vol. 6. Elsevier, Amsterdam, pp. 575–583] first introduced balanced sampling plans for the exclusion of contiguous units. Sampling plans that excluded the selection of contiguous units within a given sample, while maintaining a constant second-order inclusion probability for non-contiguous units, were investigated for finite populations of N units arranged in a circular, one-dimensional ordering. While significant advancements have been made in the identification and generalizations of such plans—commonly referred to as BSA sampling plans—little is known concerning the extension of such sampling plans to multi-dimensional populations. This paper will present a review of the pertinent results of one-dimensional BSA sampling plans and a discussion concerning the properties of two-dimensional BSA sampling plans.  相似文献   

13.
A robust estimate of the correlation coefficient for a bivariate normal distribution using balanced ranked set sampling is studied. We show that this estimate is at least as efficient as the corresponding estimate based on simple random sampling and highly efficient compared to the maximum likelihood estimate using balanced ranked set sampling. The estimate is robust to common ranking errors. Small sample performance of the estimate is studied by simulation under imperfect and perfect ranking. A variance stabilizing transformation for the confidence interval of the correlation coefficient is obtained.  相似文献   

14.
We propose a novel Bayesian nonparametric (BNP) model, which is built on a class of species sampling models, for estimating density functions of temporal data. In particular, we introduce species sampling mixture models with temporal dependence. To accommodate temporal dependence, we define dependent species sampling models by modeling random support points and weights through an autoregressive model, and then we construct the mixture models based on the collection of these dependent species sampling models. We propose an algorithm to generate posterior samples and present simulation studies to compare the performance of the proposed models with competitors that are based on Dirichlet process mixture models. We apply our method to the estimation of densities for the price of apartment in Seoul, the closing price in Korea Composite Stock Price Index (KOSPI), and climate variables (daily maximum temperature and precipitation) of around the Korean peninsula.  相似文献   

15.
In this paper, three sampling-estimating strategies involving linear, balanced and modified systematic sampling are considered for the estimation of a finite population total in the presence of parabolic trend. Using appropriate super-population models, their performances are evaluated. For super-population models with constant variance, Yates corrected estimator under linear systematic sampling is shown to perform well. Choices of variance functions under which modified and balanced systematic sampling perform well are also identified based on extensive numerical studies.  相似文献   

16.
Abstract

In environmental monitoring and assessment, the main focus is to achieve observational economy and to collect data with unbiased, efficient and cost-effective sampling methods. Ranked set sampling (RSS) is one traditional method that is mostly used for accomplishing observational economy. In this article, we propose an unbiased sampling scheme, named paired double RSS (PDRSS) for estimating the population mean. We study the performance of the mean estimators under PDRSS based on perfect and imperfect rankings. It is shown that, for perfect ranking, the variance of the mean estimator under PDRSS is always less than the variance of mean estimator based on simple random sampling, paired RSS and RSS. The mean estimators under RSS, median RSS, PDRSS, and double RSS are also compared with the regression estimator of population mean based on SRS. The procedure is also illustrated with a case study using a real data set.  相似文献   

17.
Hedayat et al. [1988a. Sampling plans excluding contiguous units. J. Statist. Plann. Inference 19, 159–170; 1988b. Designs in survey sampling avoiding contiguous units. In: Krishnaiah, P.R., Rao, C.R. (Eds.). Handbook of Statistics, vol. 6. Elsevier, Amsterdam, pp. 575–583] first introduced balanced sampling designs for the exclusion of contiguous units. Sampling plans that excluded the selection of contiguous units within a given sample, while maintaining a constant second-order inclusion probability for non-contiguous units, were investigated for finite populations of N units arranged in a circular, one-dimensional ordering. There remain many open questions about the existence of such plans and their extension to plans excluding adjacent units. We present new generation techniques and new balanced sampling plans for the exclusion of adjacent units under finite, one-dimensional, circularly and linearly ordered populations.  相似文献   

18.
We consider variable acceptance sampling plans that control the lot or process fraction defective, where a specification limit defines acceptable quality. The problem is to find a sampling plan that fulfils some conditions, usually on the operation characteristic. Its calculation heavily depends on distributional properties that, in practice, might be doubtful. If prior data are already available, we propose to estimate the sampling plan by means of bootstrap methods. The bias and standard error of the estimated plan can be assessed easily by Monte Carlo approximation to the respective bootstrap moments. This resampling approach does not require strong assumptions and, furthermore, is a flexible method that can be extended to any statistic that might be informative for the fraction defective in a lot.  相似文献   

19.
The authors show how ranked set sampling, both balanced and unbalanced, can be extended to ordered categorical variables with the goal of estimating the probabilities of all categories. They use ordinal logistic regression to aid in the ranking of the ordinal variable of interest. They also propose an optimal allocation scheme and methods for implementing it under either perfect or imperfect rankings. Results from a simulation study using data from the third National Health and Nutrition Examination Survey indicate that the use of ordinal logistic regression in ranking leads to substantial gains in precision for estimation of cell probabilities.  相似文献   

20.
We propose a novel alternative to case-control sampling for the estimation of individual-level risk in spatial epidemiology. Our approach uses weighted estimating equations to estimate regression parameters in the intensity function of an inhomogeneous spatial point process, when information on risk-factors is available at the individual level for cases, but only at a spatially aggregated level for the population at risk. We develop data-driven methods to select the weights used in the estimating equations and show through simulation that the choice of weights can have a major impact on efficiency of estimation. We develop a formal test to detect non-Poisson behavior in the underlying point process and assess the performance of the test using simulations of Poisson and Poisson cluster point processes. We apply our methods to data on the spatial distribution of childhood meningococcal disease cases in Merseyside, U.K. between 1981 and 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号