首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the on-line problem of scheduling nonpreemptively n independent jobs on m > 1 identical and parallel machines with the objective to maximize the minimum machine completion time. It is assumed that the values of the processing times are unknown but the order of the jobs by their processing times is known in advance. We are asked to decide the assignment of all the jobs to some machines at time zero by utilizing only ordinal data rather than the actual magnitudes of jobs. Algorithms to slove the problem are called ordinal algorithms. In this paper, we give lower bounds and ordinal algorithms. We first propose an algorithm MIN which is at most -competitive for any m machine case, while the lower bound is i=1 m 1/i. Both are on the order of (ln m). Furthermore, for m = 3, we present an optimal algorithm.  相似文献   

2.
Batch-Processing Scheduling with Setup Times   总被引:2,自引:0,他引:2  
The problem is to minimize the total weighted completion time on a single batch-processing machine with setup times. The machine can process a batch of at most B jobs at one time, and the processing time of a batch is given by the longest processing time among the jobs in the batch. The setup time of a batch is given by the largest setup time among the jobs in the batch. This batch-processing problem reduces to the ordinary uni-processor scheduling problem when B = 1. In this paper we focus on the extreme case of B = +, i.e. a batch can contain any number of jobs. We present in this paper a polynomial-time approximation algorithm for the problem with a performance guarantee of 2. We further show that a special case of the problem can be solved in polynomial time.  相似文献   

3.
Scheduling a batch processing system has been extensively studied in the last decade. A batch processing system is modelled as a machine that can process up to b jobs simultaneously as a batch. The scheduling problem involves assigning all n jobs to batches and determining the batch sequence in such a way that certain objective function of job completion times C j is minimized. In this paper, we address the scheduling problem under the on-line setting in the sense that we construct our schedule irrevocably as time proceeds and do not know of the existence of any job that may arrive later. Our objective is to minimize the total weighted completion time w j C j. We provide a linear time on-line algorithm for the unrestrictive model (i.e., b n) and show that the algorithm is 10/3-competitive. For the restrictive model (i.e., b < n), we first consider the (off-line) problem of finding a maximum independent vertex set in an interval graph with cost constraint (MISCP), which is NP-hard. We give a dual fully polynomial time approximation scheme for MISCP, which leads us to a (4 + )-competitive on-line algorithm for any > 0 for the original on-line scheduling problem. These two on-line algorithms are the first deterministic algorithms of constant performance guarantees.  相似文献   

4.
We consider the multiprocessor scheduling problem in which one must schedule n independent tasks nonpreemptively on m identical, parallel machines, such that the completion time of the last task is minimal. For this well-studied problem the Largest Differencing Method of Karmarkar and Karp outperforms other existing polynomial-time approximation algorithms from an average-case perspective. For m ≥ 3 the worst-case performance of the Largest Differencing Method has remained a challenging open problem. In this paper we show that the worst-case performance ratio is bounded between . For fixed m we establish further refined bounds in terms of n.  相似文献   

5.
The worst-case behavior of the critical path (CP) algorithm for multiprocessor scheduling with an out-tree task dependency structure is studied. The out-tree is not known in advance and the tasks are released on-line over time (each task is released at the completion time of its direct predecessor task in the out-tree). For each task, the processing time and the remainder (the length of the longest chain of the future tasks headed by this task) become known at its release time. The tight worst-case ratio and absolute error are derived for this strongly clairvoyant on-line model. For out-trees with a specific simple structure, essentially better worst-case ratio and absolute error are derived. Our bounds are given in terms of t max, the length of the longest chain in the out-tree, and it is shown that the worst-case ratio asymptotically approaches 2 for large t max when the number of processors , where is an integer close to . A non-clairvoyant on-line version (without knowledge of task processing time and remainder at the release time of the task) is also considered and is shown that the worst-case behavior of width-first search is better or the same as that of the depth-first search.  相似文献   

6.
Scheduling a single semi-continuous batching machine   总被引:3,自引:0,他引:3  
Lixin Tang  Yufang Zhao   《Omega》2008,36(6):992
This paper addresses a new problem, called semi-continuous batch scheduling, which arises in the heating-operation of tube-billets in the steel industry. Each heating furnace can be regarded as a semi-continuous batching machine, which can handle up to C jobs simultaneously. The jobs in the same batch enter and leave the machine semi-continuously, which differs from the traditional batching machine scheduling where the jobs in same batch have a starting time and a finishing time. In this paper the processing time of a batch depends on the capacity of the semi-continuous batching machine, the longest processing time of jobs in the batch and its size. The objectives are to schedule jobs on the machine so that the makespan and the total completion time are minimized. A schedule for a semi-continuous batching machine consists of a batching and sequencing for the batches. We propose the optimal properties of two different objective functions and present the different dynamic programming algorithms with a running time of O(n2), respectively.  相似文献   

7.
Given P processors, and a set of precedence constrained parallel tasks with their processor requirements and execution times, the problem of scheduling precedence constrained parallel tasks on multiprocessors is to find a nonpreemptive schedule of the tasks on a multiprocessor with P processors, such that the schedule length is minimized. We show that for many heuristic choices of the initial priority list, the list scheduling algorithm has worst-case performance ratio P, which is unbounded as P gets large. However, it is also shown that when task sizes are bounded from above by a fraction of P, the list scheduling algorithm has finite worst-case performance ratio. In particular, we prove that if all tasks request for no more than qP processors, where 0 < q < 1, then the worst-case performance ratio of the list scheduling algorithm is no larger than
which is independent of the initial priority list. When q is small, the above bound is very close to the well known Graham's bound 2 – 1/P in scheduling sequential tasks.  相似文献   

8.
We consider the following optimization problem. There is a set of \(n\) dedicated jobs that are to be processed on \(m\) parallel machines. The job set is partitioned into subsets and jobs of each subset have a common due date. Processing times of jobs are interconnected and they are the subject of the decision making. The goal is to choose a processing time for each job in a feasible way and to construct a schedule that minimizes the maximum lateness. We show that the problem is NP-hard even if \(m=1\) and that it is NP-hard in the strong sense if \(m\) is a variable. We prove that there is no approximate polynomial algorithm with guaranteed approximation ratio less than 2. We propose an integer linear formulation for the problem and perform experiments. The experiments show that the solutions obtained with CPLEX within the limit of 5 min are on average about 5 % from the optimum value for instances with up to 150 jobs, 16 subsets and 11 machines. Most instances were solved to optimality and the average CPLEX running time was 32 s for these instances.  相似文献   

9.
具有优先约束和加工时间依赖开工时间的单机排序问题   总被引:3,自引:1,他引:3  
研究工件间的优先约束为串并有向图的单机加权总完工时间问题,通过证明在工件加工时间是开工时间的线性函数的情况下,模块M的ρ因子最大初始集合I中的工件优先于模块M中的其它工件加工,并且被连续加工所得的排序为最优排序,从而将Lawler用来求解约束为串并有向图的单机加权总完工时间问题的方法推广到这个问题上来。  相似文献   

10.
In this paper we consider the scheduling problem with parallel-batching machines from a game theoretic perspective. There are m parallel-batching machines each of which can handle up to b jobs simultaneously as a batch. The processing time of a batch is the time required for processing the longest job in the batch, and all the jobs in a batch start and complete at the same time. There are n jobs. Each job is owned by a rational and selfish agent and its individual cost is the completion time of its job. The social cost is the largest completion time over all jobs, the makespan. We design a coordination mechanism for the scheduling game problem. We discuss the existence of pure Nash Equilibria and offer upper and lower bounds on the price of anarchy of the coordination mechanism. We show that the mechanism has a price of anarchy no more than \(2-\frac{2}{3b}-\frac{1}{3\max \{m,b\}}\).  相似文献   

11.
Hypergraph 2-colorability, also known as set splitting, is a widely studied problem in graph theory. In this paper we study the maximization version of the same. We recast the problem as a special type of satisfiability problem and give approximation algorithms for it. Our results are valid for hypergraph 2-colorability, set splitting and MAX-CUT (which is a special case of hypergraph 2-colorability) because the reductions are approximation preserving. Here we study the MAXNAESP problem, the optimal solution to which is a truth assignment of the literals that maximizes the number of clauses satisfied. As a main result of the paper, we show that any locally optimal solution (a solution is locally optimal if its value cannot be increased by complementing assignments to literals and pairs of literals) is guaranteed a performance ratio of . This is an improvement over the ratio of attributed to another local improvement heuristic for MAX-CUT (C. Papadimitriou, Computational Complexity, Addison Wesley, 1994). In fact we provide a bound of for this problem, where k 3 is the minimum number of literals in a clause. Such locally optimal algorithms appear to subsume typical greedy algorithms that have been suggested for problems in the general domain of satisfiability. It should be noted that the NAESP problem where each clause has exactly two literals, is equivalent to MAX-CUT. However, obtaining good approximation ratios using semi-definite programming techniques (M. Goemans and D.P. Williamson, in Proceedings of the 26th Annual ACM Symposium on Theory of Computing, 1994a, pp. 422–431) appears difficult. Also, the randomized rounding algorithm as well as the simple randomized algorithm both (M. Goemans and D.P. Williamson, SIAM J. Disc. Math, vol. 7, pp. 656–666, 1994b) yield a bound of for the MAXNAESP problem. In contrast to this, the algorithm proposed in this paper obtains a bound of for this problem.  相似文献   

12.
We consider the scheduling problems arising when two agents, each with a family of jobs, compete to perform their respective jobs on a single machine. A setup time is needed for a job if it is the first job to be processed on the machine or its processing on the machine follows a job that belongs to another family. Each agent wants to minimize a certain cost function, which depends on the completion times of its jobs only. The aim is to find a schedule for all the jobs of the two agents that minimizes the objective of one agent while keeping the objective of the other agent being bounded by a fixed value \(Q\). Polynomial-time and pseudo-polynomial-time algorithms are designed to solve the problem involving various combinations of regular scheduling objective functions.  相似文献   

13.
We consider the (preemptive bipartite scheduling problem PBS) (Crescenzi et al., On approximating a scheduling problem, Journal of Combinatorial Optimization, vol. 5, pp. 287–297, 2001) arising in switching communication systems, where each input and output port can be involved in at most one communication at the same time. Given a set of communication tasks to be communicated from the transmitters to the receivers of such a system, we aim to find a schedule minimizing the overall transmission time. To achieve this, we allow the preemption of communication tasks. However, in practice preemption comes with a cost, d, and this renders the problem NP-hard (Gopal et al., An optimal switching algorithm for multibeam satellite systems with variable bandwidth beams, IEEE Trans. Commun., vol.30, pp. 2475–2481, 1982). In this paper, we present a approximation algorithm, which is the first one for the PBS problem with approximation ratio strictly less than two. Furthermore, we propose a simple optimal polynomial time algorithm for a subclass of instances of the PBS problem.This work has been partially supported by the the European Union (FET-Working Group APPOL II), and the Greek General Secretariat of Research and Technology.  相似文献   

14.
Luo  Wenchang  Chin  Rylan  Cai  Alexander  Lin  Guohui  Su  Bing  Zhang  An 《Journal of Combinatorial Optimization》2022,44(1):690-722

In the multiprocessor scheduling problem to minimize the total job completion time, an optimal schedule can be obtained by the shortest processing time rule and the completion time of each job in the schedule can be used as a guarantee for scheduling revenue. However, in practice, some jobs will not arrive at the beginning of the schedule but are delayed and their delayed arrival times are given to the decision-maker for possible rescheduling. The decision-maker can choose to reject some jobs in order to minimize the total operational cost that includes three cost components: the total rejection cost of the rejected jobs, the total completion time of the accepted jobs, and the penalty on the maximum tardiness for the accepted jobs, for which their completion times in the planned schedule are their virtual due dates. This novel rescheduling problem generalizes several classic NP-hard scheduling problems. We first design a pseudo-polynomial time dynamic programming exact algorithm and then, when the tardiness can be unbounded, we develop it into a fully polynomial time approximation scheme. The dynamic programming exact algorithm has a space complexity too high for truthful implementation; we propose an alternative to integrate the enumeration and the dynamic programming recurrences, followed by a depth-first-search walk in the reschedule space. We implemented the alternative exact algorithm in C and conducted numerical experiments to demonstrate its promising performance.

  相似文献   

15.
We consider the problem of scheduling deteriorating jobs or shortening jobs with two agents A and B. We are interested in generating all Pareto-optimal schedules for the two criteria: (1) the total completion time of the jobs in A and the maximum cost of the jobs in B, and (2) the maximum cost of the jobs in A and the maximum cost of the jobs in B. We show that all Pareto-optimal schedules for both problems can be generated in polynomial time, whether the jobs are deteriorating or shortening.  相似文献   

16.
We study the online scheduling problem on m identical parallel machines to minimize makespan, i.e., the maximum completion time of the jobs, where m is given in advance and the jobs arrive online over time. We assume that the jobs, which arrive at some nonnegative real times, are of equal-length and are restricted by chain precedence constraints. Moreover, the jobs arriving at distinct times are independent, and so, only the jobs arriving at a common time are restricted by the chain precedence constraints. In the literature, a best possible online algorithm of a competitive ratio 1.3028 is given for the case \(m=2\). But the problem is unaddressed for \(m\ge 3\). In this paper, we present a best possible online algorithm for the problem with \(m\ge 3\), where the algorithm has a competitive ratio of 1.3028 for \(3\le m\le 5\) and 1.3146 for \(m\ge 6\).  相似文献   

17.
The objective of the Interconnecting Highways problem is to construct roads of minimum total length to interconnect n given highways under the constraint that the roads can intersect each highway only at one point in a designated interval which is a line segment. We present a polynomial time approximation scheme for this problem by applying Arora's framework (Arora, 1998; also available from http:www.cs.princeton.edu/~arora). For every fixed c > 1 and given any n line segments in the plane, a randomized version of the scheme finds a -approximation to the optimal cost in O(n O(c)log(n) time.  相似文献   

18.
Given a finite set V and a set function , we consider the problem of constructing an undirected multigraph G = (V,E) such that the cut function together has value at least 2 for all non-empty and proper subsets of V. If f is intersecting submodular and posi-modular, and satisfies the tripartite inequality, then we show that such a multigraph G with the minimum number of edges can be found in time, where is the time to compute the value of f(X) for a subset .  相似文献   

19.
Let G = (V,E) be a plane graph with nonnegative edge weights, and let be a family of k vertex sets , called nets. Then a noncrossing Steiner forest for in G is a set of k trees in G such that each tree connects all vertices, called terminals, in net N i, any two trees in do not cross each other, and the sum of edge weights of all trees is minimum. In this paper we give an algorithm to find a noncrossing Steiner forest in a plane graph G for the case where all terminals in nets lie on any two of the face boundaries of G. The algorithm takes time if G has n vertices and each net contains a bounded number of terminals.  相似文献   

20.
Center and Distinguisher for Strings with Unbounded Alphabet   总被引:2,自引:0,他引:2  
Consider two sets and of strings of length L with characters from an unbounded alphabet , i.e., the size of is not bounded by a constant and has to be taken into consideration as a parameter for input size. A closest string s* of is a string that minimizes the maximum of Hamming1 distance(s, s*) over all string s : s . In contrast, a farthest string t* from maximizes the minimum of Hamming distance(t*,t) over all elements t: t . A distinguisher of from is a string that is close to every string in and far away from any string in . We obtain polynomial time approximation schemes to settle the above problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号