首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
An instance I of Ring Grooming consists of m sets A 1,A 2,…, A m from the universe {0, 1,…, n − 1} and an integer g ≥ 2. The unrestricted variant of Ring Grooming, referred to as Unrestricted Ring Grooming, seeks a partition {P 1 , P 2, …,P k } of {1, 2, …, m} such that for each 1 ≤ ik and is minimized. The restricted variant of Ring Grooming, referred to as Restricted Ring Grooming, seeks a partition of {1,2,…,m} such that | P i | ≤ g for each and is minimized. If g = 2, we provide an optimal polynomial-time algorithm for both variants. If g > 2, we prove that both both variants are NP-hard even with fixed g. When g is a power of two, we propose an approximation algorithm called iterative matching. Its approximation ratio is exactly 1.5 when g = 4, at most 2.5 when g = 8, and at most in general while it is conjectured to be at most . The iterative matching algorithm is also extended for Unrestricted Ring Grooming with arbitrary g, and a loose upper bound on its approximation ratio is . In addition, set-cover based approximation algorithms have been proposed for both Unrestricted Ring Grooming and Restricted Ring Grooming. They have approximation ratios of at most 1 + log g, but running time in polynomial of m g . Work supported by a DIMACS postdoctoral fellowship.  相似文献   

2.
We consider a two-stage flexible flow shop problem with a single machine at one stage and m identical machines at the other stage, where the processing times of each job at both stages are identical. The objective is to minimize the makespan. We describe some optimality conditions and show that the problem is NP-hard when m is fixed. Finally, we present an approximation algorithm that has a worst-case performance ratio of $\frac{5}{4}$ for m=2 and $\frac{\sqrt{1+m^{2}}+1+m}{2m}$ for m≥3.  相似文献   

3.
For plane triangulations, it has been proved that there exists a plane triangulation G with n vertices such that for any st-orientation of G, the length of the longest directed paths of G in the st-orientation is (Zhang and He in Lecture Notes in Computer Science, vol. 3383, pp. 425–430, 2005). In this paper, we prove the bound is optimal by showing that every plane triangulation G with n-vertices admits an st-orientation with the length of its longest directed paths bounded by . In addition, this st-orientation is constructible in linear time. A by-product of this result is that every plane graph G with n vertices admits a visibility representation with height , constructible in linear time, which is also optimal. A preliminary version of this paper was presented at AAIM 2007.  相似文献   

4.
In this paper we consider three semi-online scheduling problems for jobs with release times on m identical parallel machines. The worst case performance ratios of the LS algorithm are analyzed. The objective function is to minimize the maximum completion time of all machines, i.e. the makespan. If the job list has a non-decreasing release times, then $2-\frac{1}{m}$ is the tight bound of the worst case performance ratio of the LS algorithm. If the job list has non-increasing processing times, we show that $2-\frac{1}{2m}$ is an upper bound of the worst case performance ratio of the LS algorithm. Furthermore if the job list has non-decreasing release times and the job list has non-increasing processing times we prove that the LS algorithm has worst case performance ratio not greater than $\frac{3}{2} -\frac{1}{2m}$ .  相似文献   

5.
Let M be the number of edges in a maximum matching in graphs with m edges, maximum vertex degree k and shortest simple odd-length cycle length L. We show that
$M\geq \left \{{l@{\quad }l}\frac{m}{2}-\frac{m}{2L},&\mbox{if}\ k=2,\\\noalign{\vspace{2pt}}\frac{m}{k}-\frac{m}{(k+L)k},&\mbox{if}\ k>2.\right.$M\geq \left \{\begin{array}{l@{\quad }l}\frac{m}{2}-\frac{m}{2L},&\mbox{if}\ k=2,\\\noalign{\vspace{2pt}}\frac{m}{k}-\frac{m}{(k+L)k},&\mbox{if}\ k>2.\end{array}\right.  相似文献   

6.
Hypergraph 2-colorability, also known as set splitting, is a widely studied problem in graph theory. In this paper we study the maximization version of the same. We recast the problem as a special type of satisfiability problem and give approximation algorithms for it. Our results are valid for hypergraph 2-colorability, set splitting and MAX-CUT (which is a special case of hypergraph 2-colorability) because the reductions are approximation preserving. Here we study the MAXNAESP problem, the optimal solution to which is a truth assignment of the literals that maximizes the number of clauses satisfied. As a main result of the paper, we show that any locally optimal solution (a solution is locally optimal if its value cannot be increased by complementing assignments to literals and pairs of literals) is guaranteed a performance ratio of . This is an improvement over the ratio of attributed to another local improvement heuristic for MAX-CUT (C. Papadimitriou, Computational Complexity, Addison Wesley, 1994). In fact we provide a bound of for this problem, where k 3 is the minimum number of literals in a clause. Such locally optimal algorithms appear to subsume typical greedy algorithms that have been suggested for problems in the general domain of satisfiability. It should be noted that the NAESP problem where each clause has exactly two literals, is equivalent to MAX-CUT. However, obtaining good approximation ratios using semi-definite programming techniques (M. Goemans and D.P. Williamson, in Proceedings of the 26th Annual ACM Symposium on Theory of Computing, 1994a, pp. 422–431) appears difficult. Also, the randomized rounding algorithm as well as the simple randomized algorithm both (M. Goemans and D.P. Williamson, SIAM J. Disc. Math, vol. 7, pp. 656–666, 1994b) yield a bound of for the MAXNAESP problem. In contrast to this, the algorithm proposed in this paper obtains a bound of for this problem.  相似文献   

7.
For a graph G, \(\alpha '(G)\) is the matching number of G. Let \(k\ge 2\) be an integer, \(K_{n}\) be the complete graph of order n. Assume that \(G_{1}, G_{2}, \ldots , G_{k}\) is a k-decomposition of \(K_{n}\). In this paper, we show that (1)
$$\begin{aligned} \left\lfloor \frac{n}{2}\right\rfloor \le \sum _{i=1}^{k} \alpha '(G_{i})\le k\left\lfloor \frac{n}{2}\right\rfloor . \end{aligned}$$
(2) If each \(G_{i}\) is non-empty for \(i = 1, \ldots , k\), then for \(n\ge 6k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n+k-1}{2}\right\rfloor . \end{aligned}$$
(3) If \(G_{i}\) has no isolated vertices for \(i = 1, \ldots , k\), then for \(n\ge 8k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n}{2}\right\rfloor +k. \end{aligned}$$
The bounds in (1), (2) and (3) are sharp. (4) When \(k= 2\), we characterize all the extremal graphs which attain the lower bounds in (1), (2) and (3), respectively.
  相似文献   

8.
Let \(k, m\) be positive integers, let \(G\) be a graph with \(m\) edges, and let \(h(m)=\sqrt{2m+\frac{1}{4}}-\frac{1}{2}\). Bollobás and Scott asked whether \(G\) admits a \(k\)-partition \(V_{1}, V_{2}, \ldots , V_{k}\) such that \(\max _{1\le i\le k} \{e(V_{i})\}\le \frac{m}{k^2}+\frac{k-1}{2k^2}h(m)\) and \(e(V_1, \ldots , V_k)\ge {k-1\over k} m +{k-1\over 2k}h(m) -\frac{(k-2)^{2}}{8k}\). In this paper, we present a positive answer to this problem on the graphs with large number of edges and small number of vertices with degrees being multiples of \(k\). Particularly, if \(d\) is not a multiple of \(k\) and \(G\) is \(d\)-regular with \(m\ge {9\over 128}k^4(k-2)^2\), then \(G\) admits a \(k\)-partition as desired. We also improve an earlier result by showing that \(G\) admits a partition \(V_{1}, V_{2}, \ldots , V_{k}\) such that \(e(V_{1},V_{2},\ldots ,V_{k})\ge \frac{k-1}{k}m+\frac{k-1}{2k}h(m)-\frac{(k-2)^{2}}{2(k-1)}\) and \(\max _{1\le i\le k}\{e(V_{i})\}\le \frac{m}{k^{2}}+\frac{k-1}{2k^{2}}h(m)\).  相似文献   

9.
We present two polynomial-time approximation algorithms for the metric case of the maximum traveling salesman problem. One of them is for directed graphs and its approximation ratio is . The other is for undirected graphs and its approximation ratio is . Both algorithms improve on the previous bests. A preliminary version of this paper appeared in the Proceedings of 13th European Symposium on Algorithms (ESA2005), Lecture Notes in Computer Science, Vol. 3669, pp. 179–190, 2005.  相似文献   

10.
Improved Bounds on Relaxations of a Parallel Machine Scheduling Problem   总被引:4,自引:0,他引:4  
We consider the problem of scheduling n jobs withrelease dates on m identical parallel machines to minimize the average completion time of the jobs. We prove that the ratio of the average completion time of the optimal nonpreemptive schedule to that of the optimal preemptive schedule is at most 7/3, improving a bound of Shmoys and Wein.  相似文献   

11.
We present an O(n3)-time randomized approximation algorithm for the maximum traveling salesman problem whose expected approximation ratio is asymptotically , where n is the number of vertices in the input (undirected) graph. This improves the previous best.Part of work done while visiting City University of Hong Kong.  相似文献   

12.
Given d>2 and a set of n grid points Q in d , we design a randomized algorithm that finds a w-wide separator, which is determined by a hyper-plane, in sublinear time such that Q has at most points on either side of the hyper-plane, and at most points within distance to the hyper-plane, where c d is a constant for fixed d. In particular, c 3=1.209. To our best knowledge, this is the first sublinear time algorithm for finding geometric separators. Our 3D separator is applied to derive an algorithm for the protein side-chain packing problem, which improves and simplifies the previous algorithm of Xu (Research in computational molecular biology, 9th annual international conference, pp. 408–422, 2005). This research is supported by Louisiana Board of Regents fund under contract number LEQSF(2004-07)-RD-A-35. The part of this research was done while Bin Fu was associated with the Department of Computer Science, University of New Orleans, LA 70148, USA and the Research Institute for Children, 200 Henry Clay Avenue, New Orleans, LA 70118, USA.  相似文献   

13.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

14.
In this paper, we consider the following single machine online tradeoff scheduling problem. A set of n independent jobs arrive online over time. Each job \(J_{j}\) has a release date \(r_{j}\), a processing time \(p_{j}\) and a delivery time \(q_{j}\). The characteristics of a job are unknown until it arrives. The goal is to find a schedule that minimizes the makespan \(C_{\max } = \max _{1 \le j \le n} C_{j}\) and the maximum lateness \(L_{\max } = \max _{1 \le j \le n} L_{j}\), where \(L_{j} = C_{j} + q_{j}\). For the problem, we present a nondominated \(( \rho , 1 + \displaystyle \frac{1}{\rho } )\)-competitive online algorithm for each \(\rho \) with \( 1 \le \rho \le \displaystyle \frac{\sqrt{5} + 1}{2}\).  相似文献   

15.
Given an undirected, connected graph G with maximum degree Δ, we introduce the concept of a [1, Δ]-factor k-packing in G, defined as a set of k edge-disjoint subgraphs of G such that every vertex of G has an incident edge in at least one subgraph. The problem of deciding whether a graph admits a [1,Δ]-factor k-packing is shown to be solvable in linear time for k = 2, but NP-complete for all k≥ 3. For k = 2, the optimisation problem of minimising the total number of edges of the subgraphs of the packing is NP-hard even when restricted to subcubic planar graphs, but can in general be approximated within a factor of by reduction to the Maximum 2-Edge-Colorable Subgraph problem. Finally, we discuss implications of the obtained results for the problem of fault-tolerant guarding of a grid, which provides the main motivation for research.  相似文献   

16.
We show several hardness results for the Minimum Hacking problem, which roughly can be described as the problem of finding the best way to compromise a target node given a few initial compromised nodes in a network. We give several reductions to show that Minimum Hacking is not approximable to within where δ = 1− c n, for any c < 1/2. We also analyze some heuristics on this problem.  相似文献   

17.
Sorting by Reversals (SBR) is one of the most widely studied models of genome rearrangements in computational molecular biology. At present, is the best known approximation ratio achievable in polynomial time for SBR. A very closely related problem, called Breakpoint Graph Decomposition (BGD), calls for a largest collection of edge disjoint cycles in a suitably-defined graph. It has been shown that for almost all instances SBR is equivalent to BGD, in the sense that any solution of the latter corresponds to a solution of the former having the same value. In this paper, we show how to improve the approximation ratio achievable in polynomial time for BGD, from the previously known to for any > 0. Combined with the results in (Caprara, Journal of Combinatorial Optimization, vol. 3, pp. 149–182, 1999b), this yields the same approximation guarantee for n! – O((n – 5)!) out of the n! instances of SBR on permutations with n elements. Our result uses the best known approximation algorithms for Stable Set on graphs with maximum degree 4 as well as for Set Packing where the maximum size of a set is 6. Any improvement in the ratio achieved by these approximation algorithms will yield an automatic improvement of our result.  相似文献   

18.
In this paper, we formulate and investigate the following problem: given integers d,k and r where k>r≥1,d≥2, and a prime power q, arrange d hyperplanes on to maximize the number of r-dimensional subspaces of each of which belongs to at least one of the hyperplanes. The problem is motivated by the need to give tighter bounds for an error-tolerant pooling design based on finite vector spaces. This work is partially supported by NSF CAREER Award CCF-0347565.  相似文献   

19.
In this paper we present two main results about the inapproximability of the exemplar conserved interval distance problem of genomes. First, we prove that it is NP-complete to decide whether the exemplar conserved interval distance between any two genomes is zero or not. This result implies that the exemplar conserved interval distance problem does not admit any approximation in polynomial time, unless P=NP. In fact, this result holds, even when every gene appears in each of the given genomes at most three times. Second, we strengthen the first result under a weaker definition of approximation, called weak approximation. We show that the exemplar conserved interval distance problem does not admit any weak approximation within a super-linear factor of , where m is the maximal length of the given genomes. We also investigate polynomial time algorithms for solving the exemplar conserved interval distance problem when certain constrains are given. We prove that the zero exemplar conserved interval distance problem of two genomes is decidable in polynomial time when one genome is O(log n)-spanned. We also prove that one can solve the constant-sized exemplar conserved interval distance problem in polynomial time, provided that one genome is trivial.  相似文献   

20.
The total domination subdivision number \(\mathrm{sd}_{\gamma _{t}}(G)\) of a graph G is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the total domination number. In this paper we prove that \(\mathrm{sd}_{\gamma_{t}}(G)\leq \lfloor\frac{2n}{3}\rfloor\) for any simple connected graph G of order n≥3 other than K 4. We also determine all simple connected graphs G with \(\mathrm{sd}_{\gamma_{t}}(G)=\lfloor\frac{2n}{3}\rfloor\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号