首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on a generalized cumulative damage approach with a stochastic process describing degradation, new accelerated life test models are presented in which both observed failures and degradation measures can be considered for parametric inference of system lifetime. Incorporating an accelerated test variable, we provide several new accelerated degradation models for failure based on the geometric Brownian motion or gamma process. It is shown that in most cases, our models for failure can be approximated closely by accelerated test versions of Birnbaum–Saunders and inverse Gaussian distributions. Estimation of model parameters and a model selection procedure are discussed, and two illustrative examples using real data for carbon-film resistors and fatigue crack size are presented.  相似文献   

2.
In this article, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this article. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.  相似文献   

3.
An important problem in reliability and survival analysis is that of modeling degradation together with any observed failures in a life test. Here, based on a continuous cumulative damage approach with a Gaussian process describing degradation, a general accelerated test model is presented in which failure times and degradation measures can be combined for inference about system lifetime. Some specific models when the drift of the Gaussian process depends on the acceleration variable are discussed in detail. Illustrative examples using simulated data as well as degradation data observed in carbon-film resistors are presented.  相似文献   

4.
Degradation testing (DT) is a useful approach to assessing the reliability of highly reliable products which are not likely to fail under the traditional life tests or accelerated life tests. There have been a great number of excellent studies investigating the estimation of the failure time distribution and the optimal design (e.g., the optimal setting of the inspection frequency, the number of measurement, and the termination time) for DTs. However, the lifetime distributions considered in the studies mentioned above are all those without failure-free life. Here, failure-free life is characterized by a threshold parameter below which no failure is possible. The main purpose of this article is to deal with the optimal design of a DT with a two-parameter exponential lifetime distribution. More specifically, with respect to a DT where a linearized degradation model is used to model the degradation process and the lifetime is assumed to follow a two-parameter exponential distribution, under the constraint that the total experimental cost does not exceed a predetermined budget, the optimal combination of the inspection frequency, the sample size, and the termination time are determined by minimizing the mean squared error of the estimated 100p-th percentile of the lifetime distribution of the product. An example is provided to illustrate the proposed method and the corresponding sensitivity analysis is also discussed.  相似文献   

5.
Estimation of the lifetime distribution of industrial components and systems yields very important information for manufacturers and consumers. However, obtaining reliability data is time consuming and costly. In this context, degradation tests are a useful alternative approach to lifetime and accelerated life tests in reliability studies. The approximate method is one of the most used techniques for degradation data analysis. It is very simple to understand and easy to implement numerically in any statistical software package. This paper uses time series techniques in order to propose a modified approximate method (MAM). The MAM improves the standard one in two aspects: (1) it uses previous observations in the degradation path as a Markov process for future prediction and (2) it is not necessary to specify a parametric form for the degradation path. Characteristics of interest such as mean or median time to failure and percentiles, among others, are obtained by using the modified method. A simulation study is performed in order to show the improved properties of the modified method over the standard one. Both methods are also used to estimate the failure time distribution of the fatigue-crack-growth data set.  相似文献   

6.
Step-stress accelerated degradation test (SSADT) plays an important role in assessing the lifetime distribution of highly reliable products under normal operating conditions when there are not enough test units available for testing purposes. Recently, the optimal SSADT plans are presented based on an underlying assumption that there is only one performance characteristic. However, many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. At the same time, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and nonnegative increments properties. Therefore, it is of great interest to design an efficient SSADT plan for the products with multiple performance characteristics based on gamma processes. In this work, we first introduce reliability model of the degradation products with two performance characteristics based on gamma processes, and then present the corresponding SSADT model. Next, under the constraint of total experimental cost, the optimal settings such as sample size, measurement times, and measurement frequency are obtained by minimizing the asymptotic variance of the estimated 100 qth percentile of the product’s lifetime distribution. Finally, a numerical example is given to illustrate the proposed procedure.  相似文献   

7.
Various types of failure, censored and accelerated life tests, are commonly employed for life testing in some manufacturing industries and products that are highly reliable. In this article, we consider the tampered failure rate model as one of such types that relate the distribution under use condition to the distribution under accelerated condition. It is assumed that the lifetimes of products under use condition have generalized Pareto distribution as a lifetime model. Some estimation methods such as graphical, moments, probability weighted moments, and maximum likelihood estimation methods for the parameters are discussed based on progressively type-I censored data. The determination of optimal stress change time is discussed under two different criteria of optimality. Finally, a Monte Carlo simulation study is carried out to examine the performance of the estimation methods and the optimality criteria.  相似文献   

8.
By combining the progressive hybrid censoring with the step-stress partially accelerated lifetime test, we propose an adaptive step-stress partially accelerated lifetime test, which allows random changing of the number of step-stress levels according to the pre-fixed censoring number and time points. Thus, the time expenditure and economic cost of the test will be reduced greatly. Based on the Lindley-distributed tampered failure rate (TFR) model with masked system lifetime data, the BFGS method is introduced in the expectation maximization (EM) algorithm to obtain the maximum likelihood estimation (MLE), which overcomes the difficulties of the vague maximization procedure in the M-step. Asymptotic confidence intervals of components' distribution parameters are also investigated according to the missing information principle. As comparison, the Bayesian estimation and the highest probability density (HPD) credible intervals are obtained by using adaptive rejection sampling. Furthermore, the reliability of the system and components are estimated at a specified time under usual and severe operating conditions. Finally, a numerical simulation example is presented to illustrate the performance of our proposed method.  相似文献   

9.
Modelling accelerated life test data by using a Bayesian approach   总被引:1,自引:0,他引:1  
Summary. Because of the high reliability of many modern products, accelerated life tests are becoming widely used to obtain timely information about their time-to-failure distributions. We propose a general class of accelerated life testing models which are motivated by the actual failure process of units from a limited failure population with a positive probability of not failing during the technological lifetime. We demonstrate a Bayesian approach to this problem, using a new class of models with non-monotone hazard rates, the hazard model with potential scope for use far beyond accelerated life testing. Our methods are illustrated with the modelling and analysis of a data set on lifetimes of printed circuit boards under humidity accelerated life testing.  相似文献   

10.
Traditionally, reliability assessment of devices has been based on life tests (LTs) or accelerated life tests (ALTs). However, these approaches are not practical for high-reliability devices which are not likely to fail in experiments of reasonable length. For these devices, LTs or ALTs will end up with a high censoring rate compromising the traditional estimation methods. An alternative approach is to monitor the devices for a period of time and assess their reliability from the changes in performance (degradation) observed during the experiment. In this paper, we present a model to evaluate the problem of train wheel degradation, which is related to the failure modes of train derailments. We first identify the most significant working conditions affecting the wheel wear using a nonlinear mixed-effects (NLME) model where the log-rate of wear is a linear function of some working conditions such as side, truck and axle positions. Next, we estimate the failure time distribution by working condition analytically. Point and interval estimates of reliability figures by working condition are also obtained. We compare the results of the analysis via an NLME to the ones obtained by an approximate degradation analysis.  相似文献   

11.
In this paper, we consider a constant stress accelerated life test terminated by a hybrid Type-I censoring at the first stress level. The model is based on a general log-location-scale lifetime distribution with mean life being a linear function of stress and with constant scale. We obtain the maximum likelihood estimators (MLE) and the approximate maximum likelihood estimators (AMLE) of the model parameters. Approximate confidence intervals, likelihood ratio tests and two bootstrap methods are used to construct confidence intervals for the unknown parameters of the Weibull and lognormal distributions using the MLEs. Finally, a simulation study and two illustrative examples are provided to demonstrate the performance of the developed inferential methods.  相似文献   

12.
In reliability analysis, accelerated life-testing allows for gradual increment of stress levels on test units during an experiment. In a special class of accelerated life tests known as step-stress tests, the stress levels increase discretely at pre-fixed time points, and this allows the experimenter to obtain information on the parameters of the lifetime distributions more quickly than under normal operating conditions. Moreover, when a test unit fails, there are often more than one fatal cause for the failure, such as mechanical or electrical. In this article, we consider the simple step-stress model under Type-II censoring when the lifetime distributions of the different risk factors are independently exponentially distributed. Under this setup, we derive the maximum likelihood estimators (MLEs) of the unknown mean parameters of the different causes under the assumption of a cumulative exposure model. The exact distributions of the MLEs of the parameters are then derived through the use of conditional moment generating functions. Using these exact distributions as well as the asymptotic distributions and the parametric bootstrap method, we discuss the construction of confidence intervals for the parameters and assess their performance through Monte Carlo simulations. Finally, we illustrate the methods of inference discussed here with an example.  相似文献   

13.
In partial step-stress accelerated life testing, models extrapolating data obtained under more severe conditions to infer the lifetime distribution under normal use conditions are needed. Bhattacharyya (Invited paper for 46th session of the ISI, 1987) proposed a tampered Brownian motion process model and later derived the probability distribution from a decay process perspective without linear assumption. In this paper, the model is described and the features of the failure time distribution are discussed. The maximum likelihood estimates of the parameters in the model and their asymptotic properties are presented. An application of models for step-stress accelerated life test to fields other than engineering is described and illustrated by applying the tampered Brownian motion process model to data taken from a clinical trial.  相似文献   

14.
Degradation tests are especially difficult to conduct for items with high reliability. Test costs, caused mainly by prolonged item duration and item destruction costs, establish the necessity of sequential degradation test designs. We propose a methodology that sequentially selects the optimal observation times to measure the degradation, using a convenient rule that maximizes the inference precision and minimizes test costs. In particular our objective is to estimate a quantile of the time to failure distribution, where the degradation process is modelled as a linear model using Bayesian inference. The proposed sequential analysis is based on an index that measures the expected discrepancy between the estimated quantile and its corresponding prediction, using Monte Carlo methods. The procedure was successfully implemented for simulated and real data.  相似文献   

15.
In this paper we consider the more realistic aspect of accelerated life testing wherein the stress on an unfailed item is allowed to increase at a preassigned test time. Such tests are known as step-stress tests. Our approach is nonparametric in that we do not make any assumptions about the underlying distribution of life lengths. We introduce a model for step-stress testing which is based on the ideas of shock models and of wear processes. This model unifies and generalizes two previously proposed models for step-stress testing. We propose an estimator for the life distribution under use conditions stress and show that this estimator is strongly consistent.  相似文献   

16.
By running the life tests at higher stress levels than normal operating conditions, accelerated life testing quickly yields information on the lifetime distribution of a test unit. The lifetime at the design stress is then estimated through extrapolation using a regression model. In constant-stress testing, a unit is tested at a fixed stress level until failure or the termination time point of the test, while step-stress testing allows the experimenter to gradually increase the stress levels at some pre-fixed time points during the test. In this article, the optimal k-level constant-stress and step-stress accelerated life tests are compared for the exponential failure data under Type-I censoring. The objective is to quantify the advantage of using the step-stress testing relative to the constant-stress one. A log-linear relationship between the mean lifetime parameter and stress level is assumed and the cumulative exposure model holds for the effect of changing stress in step-stress testing. The optimal design point is then determined under C-optimality, D-optimality, and A-optimality criteria. The efficiency of step-stress testing compared to constant-stress testing is discussed in terms of the ratio of optimal objective functions based on the information matrix.  相似文献   

17.
Acceptance sampling based on life tests: log-logistic model   总被引:1,自引:0,他引:1  
The problem of acceptance sampling when the life test is truncated at a preassigned time is considered. For various acceptance numbers, confidence levels and values of the ratio of the fixed experimental time to the specified average life, the minimum sample size necessary to ensure the specified average life, are obtained under the assumption that the lifetime variate of the test items follows a distribution belonging to Burr's family XII of distributions - called the log-logistic model. The operating characteristic values of the sampling plans and producer's risk are presented. The results are illustrated by an example.  相似文献   

18.
Accelerated life testing is widely used in product life testing experiments since it provides significant reduction in time and cost of testing. In this paper, assuming that the lifetime of items under use condition follow the two-parameter Pareto distribution of the second kind, partially accelerated life tests based on progressively Type-II censored samples are considered. The likelihood equations of the model parameters and the acceleration factor are reduced to a single nonlinear equation to be solved numerically to obtain the maximum-likelihood estimates (MLEs). Based on normal approximation to the asymptotic distribution of MLEs, the approximate confidence intervals (ACIs) for the parameters are derived. Two bootstrap CIs are also proposed. The classical Bayes estimates cannot be obtained in explicit form, so we propose to apply Markov chain Monte Carlo method to tackle this problem, which allows us to construct the credible interval of the involved parameters. Analysis of a simulated data set has also been presented for illustrative purposes. Finally, a Monte Carlo simulation study is carried out to investigate the precision of the Bayes estimates with MLEs and to compare the performance of different corresponding CIs considered.  相似文献   

19.
In this paper, the problem of constant partially accelerated life tests when the lifetime follows the generalized exponential distribution is considered. Based on progressive type-II censoring scheme, the maximum likelihood and Bayes methods of estimation are used for estimating the distribution parameters and acceleration factor. A Monte Carlo simulation study is carried out to examine the performance of the obtained estimates.  相似文献   

20.
In this paper, we propose the quick switching sampling system for assuring mean life of a product under time truncated life test where the lifetime of the product follows the Weibull distribution and the mean life is considered as the quality of the product. The optimal parameters of the proposed system are determined using two points on the operating characteristic curve approach for various combinations of consumer's risk and ratio of true mean life time and specified life time. Tables are constructed to determine the optimal parameters for specified acceptable quality level and limiting quality level along with the corresponding probabilities of acceptance. The proposed system is compared with other existing sampling plans under Weibull lifetime model. In addition, an economical design of the proposed system is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号