首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In parallel group trials, long‐term efficacy endpoints may be affected if some patients switch or cross over to the alternative treatment arm prior to the event. In oncology trials, switch to the experimental treatment can occur in the control arm following disease progression and potentially impact overall survival. It may be a clinically relevant question to estimate the efficacy that would have been observed if no patients had switched, for example, to estimate ‘real‐life’ clinical effectiveness for a health technology assessment. Several commonly used statistical methods are available that try to adjust time‐to‐event data to account for treatment switching, ranging from naive exclusion and censoring approaches to more complex inverse probability of censoring weighting and rank‐preserving structural failure time models. These are described, along with their key assumptions, strengths, and limitations. Best practice guidance is provided for both trial design and analysis when switching is anticipated. Available statistical software is summarized, and examples are provided of the application of these methods in health technology assessments of oncology trials. Key considerations include having a clearly articulated rationale and research question and a well‐designed trial with sufficient good quality data collection to enable robust statistical analysis. No analysis method is universally suitable in all situations, and each makes strong untestable assumptions. There is a need for further research into new or improved techniques. This information should aid statisticians and their colleagues to improve the design and analysis of clinical trials where treatment switch is anticipated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

A central objective of empirical research on treatment response is to inform treatment choice. Unfortunately, researchers commonly use concepts of statistical inference whose foundations are distant from the problem of treatment choice. It has been particularly common to use hypothesis tests to compare treatments. Wald’s development of statistical decision theory provides a coherent frequentist framework for use of sample data on treatment response to make treatment decisions. A body of recent research applies statistical decision theory to characterize uniformly satisfactory treatment choices, in the sense of maximum loss relative to optimal decisions (also known as maximum regret). This article describes the basic ideas and findings, which provide an appealing practical alternative to use of hypothesis tests. For simplicity, the article focuses on medical treatment with evidence from classical randomized clinical trials. The ideas apply generally, encompassing use of observational data and treatment choice in nonmedical contexts.  相似文献   

3.
This paper describes the author's research connecting the empirical analysis of treatment response with the normative analysis of treatment choice under ambiguity. Imagine a planner who must choose a treatment rule assigning a treatment to each member of a heterogeneous population of interest. The planner observes certain covariates for each person. Each member of the population has a response function mapping treatments into a real-valued outcome of interest. Suppose that the planner wants to choose a treatment rule that maximizes the population mean outcome. An optimal rule assigns to each member of the population a treatment that maximizes mean outcome conditional on the person's observed covariates. However, identification problems in the empirical analysis of treatment response commonly prevent planners from knowing the conditional mean outcomes associated with alternative treatments; hence planners commonly face problems of treatment choice under ambiguity. The research surveyed here characterizes this ambiguity in practical settings where the planner may be able to bound but not identify the relevant conditional mean outcomes. The statistical problem of treatment choice using finite-sample data is discussed as well.  相似文献   

4.
Randomized clinical trials with count measurements as the primary outcome are common in various medical areas such as seizure counts in epilepsy trials, or relapse counts in multiple sclerosis trials. Controlled clinical trials frequently use a conventional parallel-group design that assigns subjects randomly to one of two treatment groups and repeatedly evaluates them at baseline and intervals across a treatment period of a fixed duration. The primary interest is to compare the rates of change between treatment groups. Generalized estimating equations (GEEs) have been widely used to compare rates of change between treatment groups because of its robustness to misspecification of the true correlation structure. In this paper, we derive a sample size formula for comparing the rates of change between two groups in a repeatedly measured count outcome using GEE. The sample size formula incorporates general missing patterns such as independent missing and monotone missing, and general correlation structures such as AR(1) and compound symmetry (CS). The performance of the sample size formula is evaluated through simulation studies. Sample size estimation is illustrated by a clinical trial example from epilepsy.  相似文献   

5.
Missing outcome data constitute a serious threat to the validity and precision of inferences from randomized controlled trials. In this paper, we propose the use of a multistate Markov model for the analysis of incomplete individual patient data for a dichotomous outcome reported over a period of time. The model accounts for patients dropping out of the study and also for patients relapsing. The time of each observation is accounted for, and the model allows the estimation of time‐dependent relative treatment effects. We apply our methods to data from a study comparing the effectiveness of 2 pharmacological treatments for schizophrenia. The model jointly estimates the relative efficacy and the dropout rate and also allows for a wide range of clinically interesting inferences to be made. Assumptions about the missingness mechanism and the unobserved outcomes of patients dropping out can be incorporated into the analysis. The presented method constitutes a viable candidate for analyzing longitudinal, incomplete binary data.  相似文献   

6.
The stratified Cox model is commonly used for stratified clinical trials with time‐to‐event endpoints. The estimated log hazard ratio is approximately a weighted average of corresponding stratum‐specific Cox model estimates using inverse‐variance weights; the latter are optimal only under the (often implausible) assumption of a constant hazard ratio across strata. Focusing on trials with limited sample sizes (50‐200 subjects per treatment), we propose an alternative approach in which stratum‐specific estimates are obtained using a refined generalized logrank (RGLR) approach and then combined using either sample size or minimum risk weights for overall inference. Our proposal extends the work of Mehrotra et al, to incorporate the RGLR statistic, which outperforms the Cox model in the setting of proportional hazards and small samples. This work also entails development of a remarkably accurate plug‐in formula for the variance of RGLR‐based estimated log hazard ratios. We demonstrate using simulations that our proposed two‐step RGLR analysis delivers notably better results through smaller estimation bias and mean squared error and larger power than the stratified Cox model analysis when there is a treatment‐by‐stratum interaction, with similar performance when there is no interaction. Additionally, our method controls the type I error rate while the stratified Cox model does not in small samples. We illustrate our method using data from a clinical trial comparing two treatments for colon cancer.  相似文献   

7.
Many clinical research studies evaluate a time‐to‐event outcome, illustrate survival functions, and conventionally report estimated hazard ratios to express the magnitude of the treatment effect when comparing between groups. However, it may not be straightforward to interpret the hazard ratio clinically and statistically when the proportional hazards assumption is invalid. In some recent papers published in clinical journals, the use of restricted mean survival time (RMST) or τ ‐year mean survival time is discussed as one of the alternative summary measures for the time‐to‐event outcome. The RMST is defined as the expected value of time to event limited to a specific time point corresponding to the area under the survival curve up to the specific time point. This article summarizes the necessary information to conduct statistical analysis using the RMST, including the definition and statistical properties of the RMST, adjusted analysis methods, sample size calculation, information fraction for the RMST difference, and clinical and statistical meaning and interpretation. Additionally, we discuss how to set the specific time point to define the RMST from two main points of view. We also provide developed SAS codes to determine the sample size required to detect an expected RMST difference with appropriate power and reconstruct individual survival data to estimate an RMST reference value from a reported survival curve.  相似文献   

8.
Multiple assessments of an efficacy variable are often conducted prior to the initiation of randomized treatments in clinical trials as baseline information. Two goals are investigated in this article, where the first goal is to investigate the choice of these baselines in the analysis of covariance (ANCOVA) to increase the statistical power, and the second to investigate the magnitude of power loss when a continuous efficacy variable is dichotomized to categorical variable as commonly reported the biomedical literature. A statistical power analysis is developed with extensive simulations based on data from clinical trials in study participants with end stage renal disease (ESRD). It is found that the baseline choices primarily depend on the correlations among the baselines and the efficacy variable, with substantial gains for correlations greater than 0.6 and negligible for less than 0.2. Continuous efficacy variables always give higher statistical power in the ANCOVA modeling and dichotomizing the efficacy variable generally decreases the statistical power by 25%, which is an important practicum in designing clinical trials for study sample size and realistically budget. These findings can be easily applied in and extended to other clinical trials with similar design.  相似文献   

9.
The power of randomized controlled clinical trials to demonstrate the efficacy of a drug compared with a control group depends not just on how efficacious the drug is, but also on the variation in patients' outcomes. Adjusting for prognostic covariates during trial analysis can reduce this variation. For this reason, the primary statistical analysis of a clinical trial is often based on regression models that besides terms for treatment and some further terms (e.g., stratification factors used in the randomization scheme of the trial) also includes a baseline (pre-treatment) assessment of the primary outcome. We suggest to include a “super-covariate”—that is, a patient-specific prediction of the control group outcome—as a further covariate (but not as an offset). We train a prognostic model or ensembles of such models on the individual patient (or aggregate) data of other studies in similar patients, but not the new trial under analysis. This has the potential to use historical data to increase the power of clinical trials and avoids the concern of type I error inflation with Bayesian approaches, but in contrast to them has a greater benefit for larger sample sizes. It is important for prognostic models behind “super-covariates” to generalize well across different patient populations in order to similarly reduce unexplained variability whether the trial(s) to develop the model are identical to the new trial or not. In an example in neovascular age-related macular degeneration we saw efficiency gains from the use of a “super-covariate”.  相似文献   

10.
Pre‐study sample size calculations for clinical trial research protocols are now mandatory. When an investigator is designing a study to compare the outcomes of an intervention, an essential step is the calculation of sample sizes that will allow a reasonable chance (power) of detecting a pre‐determined difference (effect size) in the outcome variable, at a given level of statistical significance. Frequently studies will recruit fewer patients than the initial pre‐study sample size calculation suggested. Investigators are faced with the fact that their study may be inadequately powered to detect the pre‐specified treatment effect and the statistical analysis of the collected outcome data may or may not report a statistically significant result. If the data produces a “non‐statistically significant result” then investigators are frequently tempted to ask the question “Given the actual final study size, what is the power of the study, now, to detect a treatment effect or difference?” The aim of this article is to debate whether or not it is desirable to answer this question and to undertake a power calculation, after the data have been collected and analysed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The log-rank test is commonly used in comparing survival distributions between treatment and control groups in clinical trials. However, in many studies, the treatment is only effective at the early stage of the trial. Especially when the two survival curves cross, the log-rank test has a low statistical power to show the survival difference. We propose a test statistic for detecting such an early difference between the two treatment arms. The new test has an intuitive geometric interpretation based on a pair chart and is shown to have more power than the log-rank test when the treatment effect only appears in the early phase of the study. This advantage is evaluated for finite sample sizes in simulation studies. Finally, the proposed method is illustrated with a real data example of patients with gastric cancer.  相似文献   

12.
Composite endpoints reveal the tendency for statistical convention to arise locally within subfields. Composites are familiar in cardiovascular trials, yet almost unknown in sepsis. However, the VITAMINS trial in patients with septic shock adopted a composite of mortality and vasopressor-free days, and an ordinal scale describing patient status rapidly became standard in COVID studies. Aware that recent use could incite interest in such endpoints, we are motivated to flag their potential value and pitfalls for sepsis research and COVID studies.  相似文献   

13.
The estimand framework included in the addendum to the ICH E9 guideline facilitates discussions to ensure alignment between the key question of interest, the analysis, and interpretation. Therapeutic knowledge and drug mechanism play a crucial role in determining the strategy and defining the estimand for clinical trial designs. Clinical trials in patients with hematological malignancies often present unique challenges for trial design due to complexity of treatment options and existence of potential curative but highly risky procedures, for example, stem cell transplant or treatment sequence across different phases (induction, consolidation, maintenance). Here, we illustrate how to apply the estimand framework in hematological clinical trials and how the estimand framework can address potential difficulties in trial result interpretation. This paper is a result of a cross-industry collaboration to connect the International Conference on Harmonisation (ICH) E9 addendum concepts to applications. Three randomized phase 3 trials will be used to consider common challenges including intercurrent events in hematologic oncology trials to illustrate different scientific questions and the consequences of the estimand choice for trial design, data collection, analysis, and interpretation. Template language for describing estimand in both study protocols and statistical analysis plans is suggested for statisticians' reference.  相似文献   

14.
We performed a simulation study comparing the statistical properties of the estimated log odds ratio from propensity scores analyses of a binary response variable, in which missing baseline data had been imputed using a simple imputation scheme (Treatment Mean Imputation), compared with three ways of performing multiple imputation (MI) and with a Complete Case analysis. MI that included treatment (treated/untreated) and outcome (for our analyses, outcome was adverse event [yes/no]) in the imputer's model had the best statistical properties of the imputation schemes we studied. MI is feasible to use in situations where one has just a few outcomes to analyze. We also found that Treatment Mean Imputation performed quite well and is a reasonable alternative to MI in situations where it is not feasible to use MI. Treatment Mean Imputation performed better than MI methods that did not include both the treatment and outcome in the imputer's model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Mediation analysis often requires larger sample sizes than main effect analysis to achieve the same statistical power. Combining results across similar trials may be the only practical option for increasing statistical power for mediation analysis in some situations. In this paper, we propose a method to estimate: (1) marginal means for mediation path a, the relation of the independent variable to the mediator; (2) marginal means for path b, the relation of the mediator to the outcome, across multiple trials; and (3) the between-trial level variance–covariance matrix based on a bivariate normal distribution. We present the statistical theory and an R computer program to combine regression coefficients from multiple trials to estimate a combined mediated effect and confidence interval under a random effects model. Values of coefficients a and b, along with their standard errors from each trial are the input for the method. This marginal likelihood based approach with Monte Carlo confidence intervals provides more accurate inference than the standard meta-analytic approach. We discuss computational issues, apply the method to two real-data examples and make recommendations for the use of the method in different settings.  相似文献   

16.
Conventional clinical trial design involves considerations of power, and sample size is typically chosen to achieve a desired power conditional on a specified treatment effect. In practice, there is considerable uncertainty about what the true underlying treatment effect may be, and so power does not give a good indication of the probability that the trial will demonstrate a positive outcome. Assurance is the unconditional probability that the trial will yield a ‘positive outcome’. A positive outcome usually means a statistically significant result, according to some standard frequentist significance test. The assurance is then the prior expectation of the power, averaged over the prior distribution for the unknown true treatment effect. We argue that assurance is an important measure of the practical utility of a proposed trial, and indeed that it will often be appropriate to choose the size of the sample (and perhaps other aspects of the design) to achieve a desired assurance, rather than to achieve a desired power conditional on an assumed treatment effect. We extend the theory of assurance to two‐sided testing and equivalence trials. We also show that assurance is straightforward to compute in some simple problems of normal, binary and gamma distributed data, and that the method is not restricted to simple conjugate prior distributions for parameters. Several illustrations are given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Inferences are made concerning population proportions when data are not missing at random.Both one sample and two sample situations are considered with examples in clinical trials.The one samplesituation involves the existence of response related incomplete data in a study conducted to make inferences involving the proportion. The two sample problem involves comparing two treatments in clinical trials when there exists dropouts due to both the treatment and the response to the treatment.Bayes procedures are used in estimating parameters of interest and testing hypotheses of interest in these two situations. An ad-hoc approach to the classical inference is presented for each ofthe two situations and compared with the Bayesian approach discussed. To illustrate the theory developed, data from clinical trials of severe head trauma patients at the Medical College of Virginia Head Injury Center from 1984 to 1987 is considered  相似文献   

18.
Noninferiority trials intend to show that a new treatment is ‘not worse'' than a standard-of-care active control and can be used as an alternative when it is likely to cause fewer side effects compared to the active control. In the case of time-to-event endpoints, existing methods of sample size calculation are done either assuming proportional hazards between the two study arms, or assuming exponentially distributed lifetimes. In scenarios where these assumptions are not true, there are few reliable methods for calculating the sample sizes for a time-to-event noninferiority trial. Additionally, the choice of the non-inferiority margin is obtained either from a meta-analysis of prior studies, or strongly justifiable ‘expert opinion'', or from a ‘well conducted'' definitive large-sample study. Thus, when historical data do not support the traditional assumptions, it would not be appropriate to use these methods to design a noninferiority trial. For such scenarios, an alternate method of sample size calculation based on the assumption of Proportional Time is proposed. This method utilizes the generalized gamma ratio distribution to perform the sample size calculations. A practical example is discussed, followed by insights on choice of the non-inferiority margin, and the indirect testing of superiority of treatment compared to placebo.KEYWORDS: Generalized gamma, noninferiority, non-proportional hazards, proportional time, relative time, sample size  相似文献   

19.
In rare diseases, typically only a small number of patients are available for a randomized clinical trial. Nevertheless, it is not uncommon that more than one study is performed to evaluate a (new) treatment. Scarcity of available evidence makes it particularly valuable to pool the data in a meta-analysis. When the primary outcome is binary, the small sample sizes increase the chance of observing zero events. The frequentist random-effects model is known to induce bias and to result in improper interval estimation of the overall treatment effect in a meta-analysis with zero events. Bayesian hierarchical modeling could be a promising alternative. Bayesian models are known for being sensitive to the choice of prior distributions for between-study variance (heterogeneity) in sparse settings. In a rare disease setting, only limited data will be available to base the prior on, therefore, robustness of estimation is desirable. We performed an extensive and diverse simulation study, aiming to provide practitioners with advice on the choice of a sufficiently robust prior distribution shape for the heterogeneity parameter. Our results show that priors that place some concentrated mass on small τ values but do not restrict the density for example, the Uniform(−10, 10) heterogeneity prior on the log(τ2) scale, show robust 95% coverage combined with less overestimation of the overall treatment effect, across varying degrees of heterogeneity. We illustrate the results with meta-analyzes of a few small trials.  相似文献   

20.
Crossover designs have some advantages over standard clinical trial designs and they are often used in trials evaluating the efficacy of treatments for infertility. However, clinical trials of infertility treatments violate a fundamental condition of crossover designs, because women who become pregnant in the first treatment period are not treated in the second period. In previous research, to deal with this problem, some new designs, such as re‐randomization designs, and analysis methods including the logistic mixture model and the beta‐binomial mixture model were proposed. Although the performance of these designs and methods has previously been evaluated in large‐scale clinical trials with sample sizes of more than 1000 per group, the actual sample sizes of infertility treatment trials are usually around 100 per group. The most appropriate design and analysis for these moderate‐scale clinical trials are currently unclear. In this study, we conducted simulation studies to determine the appropriate design and analysis method of moderate‐scale clinical trials for irreversible endpoints by evaluating the statistical power and bias in the treatment effect estimates. The Mantel–Haenszel method had similar power and bias to the logistic mixture model. The crossover designs had the highest power and the smallest bias. We recommend using a combination of the crossover design and the Mantel–Haenszel method for two‐period, two‐treatment clinical trials with irreversible endpoints. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号