首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

Researchers commonly use p-values to answer the question: How strongly does the evidence favor the alternative hypothesis relative to the null hypothesis? p-Values themselves do not directly answer this question and are often misinterpreted in ways that lead to overstating the evidence against the null hypothesis. Even in the “post p?<?0.05 era,” however, it is quite possible that p-values will continue to be widely reported and used to assess the strength of evidence (if for no other reason than the widespread availability and use of statistical software that routinely produces p-values and thereby implicitly advocates for their use). If so, the potential for misinterpretation will persist. In this article, we recommend three practices that would help researchers more accurately interpret p-values. Each of the three recommended practices involves interpreting p-values in light of their corresponding “Bayes factor bound,” which is the largest odds in favor of the alternative hypothesis relative to the null hypothesis that is consistent with the observed data. The Bayes factor bound generally indicates that a given p-value provides weaker evidence against the null hypothesis than typically assumed. We therefore believe that our recommendations can guard against some of the most harmful p-value misinterpretations. In research communities that are deeply attached to reliance on “p?<?0.05,” our recommendations will serve as initial steps away from this attachment. We emphasize that our recommendations are intended merely as initial, temporary steps and that many further steps will need to be taken to reach the ultimate destination: a holistic interpretation of statistical evidence that fully conforms to the principles laid out in the ASA statement on statistical significance and p-values.  相似文献   

2.
Abstract

In statistical hypothesis testing, a p-value is expected to be distributed as the uniform distribution on the interval (0, 1) under the null hypothesis. However, some p-values, such as the generalized p-value and the posterior predictive p-value, cannot be assured of this property. In this paper, we propose an adaptive p-value calibration approach, and show that the calibrated p-value is asymptotically distributed as the uniform distribution. For Behrens–Fisher problem and goodness-of-fit test under a normal model, the calibrated p-values are constructed and their behavior is evaluated numerically. Simulations show that the calibrated p-values are superior than original ones.  相似文献   

3.
P-values are useful statistical measures of evidence against a null hypothesis. In contrast to other statistical estimates, however, their sample-to-sample variability is usually not considered or estimated, and therefore not fully appreciated. Via a systematic study of log-scale p-value standard errors, bootstrap prediction bounds, and reproducibility probabilities for future replicate p-values, we show that p-values exhibit surprisingly large variability in typical data situations. In addition to providing context to discussions about the failure of statistical results to replicate, our findings shed light on the relative value of exact p-values vis-a-vis approximate p-values, and indicate that the use of *, **, and *** to denote levels 0.05, 0.01, and 0.001 of statistical significance in subject-matter journals is about the right level of precision for reporting p-values when judged by widely accepted rules for rounding statistical estimates.  相似文献   

4.
For a multivariate linear model, Wilk's likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative hypothesis requires complex analytic approximations, and more importantly, these distributional approximations are feasible only for moderate dimension of the dependent variable, say p≤20. On the other hand, assuming that the data dimension p as well as the number q of regression variables are fixed while the sample size n grows, several asymptotic approximations are proposed in the literature for Wilk's Λ including the widely used chi-square approximation. In this paper, we consider necessary modifications to Wilk's test in a high-dimensional context, specifically assuming a high data dimension p and a large sample size n. Based on recent random matrix theory, the correction we propose to Wilk's test is asymptotically Gaussian under the null hypothesis and simulations demonstrate that the corrected LRT has very satisfactory size and power, surely in the large p and large n context, but also for moderately large data dimensions such as p=30 or p=50. As a byproduct, we give a reason explaining why the standard chi-square approximation fails for high-dimensional data. We also introduce a new procedure for the classical multiple sample significance test in multivariate analysis of variance which is valid for high-dimensional data.  相似文献   

5.
ABSTRACT

Longstanding concerns with the role and interpretation of p-values in statistical practice prompted the American Statistical Association (ASA) to make a statement on p-values. The ASA statement spurred a flurry of responses and discussions by statisticians, with many wondering about the steps necessary to expand the adoption of these principles. Introductory statistics classrooms are key locations to introduce and emphasize the nuance related to p-values; in part because they engrain appropriate analysis choices at the earliest stages of statistics education, and also because they reach the broadest group of students. We propose a framework for statistics departments to conduct a content audit for p-value principles in their introductory curriculum. We then discuss the process and results from applying this course audit framework within our own statistics department. We also recommend meeting with client departments as a complement to the course audit. Discussions about analyses and practices common to particular fields can help to evaluate if our service courses are meeting the needs of client departments and to identify what is needed in our introductory courses to combat the misunderstanding and future misuse of p-values.  相似文献   

6.
ABSTRACT

We discuss problems the null hypothesis significance testing (NHST) paradigm poses for replication and more broadly in the biomedical and social sciences as well as how these problems remain unresolved by proposals involving modified p-value thresholds, confidence intervals, and Bayes factors. We then discuss our own proposal, which is to abandon statistical significance. We recommend dropping the NHST paradigm—and the p-value thresholds intrinsic to it—as the default statistical paradigm for research, publication, and discovery in the biomedical and social sciences. Specifically, we propose that the p-value be demoted from its threshold screening role and instead, treated continuously, be considered along with currently subordinate factors (e.g., related prior evidence, plausibility of mechanism, study design and data quality, real world costs and benefits, novelty of finding, and other factors that vary by research domain) as just one among many pieces of evidence. We have no desire to “ban” p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors. We also argue that it seldom makes sense to calibrate evidence as a function of p-values or other purely statistical measures. We offer recommendations for how our proposal can be implemented in the scientific publication process as well as in statistical decision making more broadly.  相似文献   

7.
Suppose that we have a nonparametric regression model Y = m(X) + ε with XRp, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random. Based on the “complete” data sets for Y after nonaprametric regression imputation and inverse probability weighted imputation, two estimators of the regression function m(x0) for fixed x0Rp are proposed. Asymptotic normality of two estimators is established, which is used to construct normal approximation-based confidence intervals for m(x0). We also construct an empirical likelihood (EL) statistic for m(x0) with limiting distribution of χ21, which is used to construct an EL confidence interval for m(x0).  相似文献   

8.
The coefficient of determination, known also as the R 2, is a common measure in regression analysis. Many scientists use the R 2 and the adjusted R 2 on a regular basis. In most cases, the researchers treat the coefficient of determination as an index of ‘usefulness’ or ‘goodness of fit,’ and in some cases, they even treat it as a model selection tool. In cases in which the data is incomplete, most researchers and common statistical software will use complete case analysis in order to estimate the R 2, a procedure that might lead to biased results. In this paper, I introduce the use of multiple imputation for the estimation of R 2 and adjusted R 2 in incomplete data sets. I illustrate my methodology using a biomedical example.  相似文献   

9.
A recent article in this journal presented a variety of expressions for the coefficient of determination (R 2) and demonstrated that these expressions were generally not equivalent. The article discussed potential pitfalls in interpreting the R 2 statistic in ordinary least-squares regression analysis. The current article extends this discussion to the case in which regression models are fit by weighted least squares and points out an additional pitfall that awaits the unwary data analyst. We show that unthinking reliance on the R 2 statistic can lead to an overly optimistic interpretation of the proportion of variance accounted for in the regression. We propose a modification of the estimator and demonstrate its utility by example.  相似文献   

10.
Square contingency tables with the same row and column classification occur frequently in a wide range of statistical applications, e.g. whenever the members of a matched pair are classified on the same scale, which is usually ordinal. Such tables are analysed by choosing an appropriate loglinear model. We focus on the models of symmetry, triangular, diagonal and ordinal quasi symmetry. The fit of a specific model is tested by the chi-squared test or the likelihood-ratio test, where p-values are calculated from the asymptotic chi-square distribution of the test statistic or, if this seems unjustified, from the exact conditional distribution. Since the calculation of exact p-values is often not feasible, we propose alternatives based on algebraic statistics combined with MCMC methods.  相似文献   

11.
Abstract

The present note explores sources of misplaced criticisms of P-values, such as conflicting definitions of “significance levels” and “P-values” in authoritative sources, and the consequent misinterpretation of P-values as error probabilities. It then discusses several properties of P-values that have been presented as fatal flaws: That P-values exhibit extreme variation across samples (and thus are “unreliable”), confound effect size with sample size, are sensitive to sample size, and depend on investigator sampling intentions. These properties are often criticized from a likelihood or Bayesian framework, yet they are exactly the properties P-values should exhibit when they are constructed and interpreted correctly within their originating framework. Other common criticisms are that P-values force users to focus on irrelevant hypotheses and overstate evidence against those hypotheses. These problems are not however properties of P-values but are faults of researchers who focus on null hypotheses and overstate evidence based on misperceptions that p?=?0.05 represents enough evidence to reject hypotheses. Those problems are easily seen without use of Bayesian concepts by translating the observed P-value p into the Shannon information (S-value or surprisal) –log2(p).  相似文献   

12.
Combining p-values from statistical tests across different studies is the most commonly used approach in meta-analysis for evolutionary biology. The most commonly used p-value combination methods mainly incorporate the z-transform tests (e.g., the un-weighted z-test and the weighted z-test) and the gamma-transform tests (e.g., the CZ method [Z. Chen, W. Yang, Q. Liu, J.Y. Yang, J. Li, and M.Q. Yang, A new statistical approach to combining p-values using gamma distribution and its application to genomewide association study, Bioinformatics 15 (2014), p. S3]). However, among these existing p-value combination methods, no method is uniformly most powerful in all situations [Chen et al. 2014]. In this paper, we propose a meta-analysis method based on the gamma distribution, MAGD, by pooling the p-values from independent studies. The newly proposed test, MAGD, allows for flexible accommodating of the different levels of heterogeneity of effect sizes across individual studies. The MAGD simultaneously retains all the characters of the z-transform tests and the gamma-transform tests. We also propose an easy-to-implement resampling approach for estimating the empirical p-values of MAGD for the finite sample size. Simulation studies and two data applications show that the proposed method MAGD is essentially as powerful as the z-transform tests (the gamma-transform tests) under the circumstance with the homogeneous (heterogeneous) effect sizes across studies.  相似文献   

13.
Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R 2, Mallows’ C p, Akaike information criteria (AIC), AICc, and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known.

We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R 2, Mallows’ C p AIC, and AICc are clearly inferior and should be avoided.  相似文献   


14.
ABSTRACT

This article has two objectives. The first and narrower is to formalize the p-value function, which records all possible p-values, each corresponding to a value for whatever the scalar parameter of interest is for the problem at hand, and to show how this p-value function directly provides full inference information for any corresponding user or scientist. The p-value function provides familiar inference objects: significance levels, confidence intervals, critical values for fixed-level tests, and the power function at all values of the parameter of interest. It thus gives an immediate accurate and visual summary of inference information for the parameter of interest. We show that the p-value function of the key scalar interest parameter records the statistical position of the observed data relative to that parameter, and we then describe an accurate approximation to that p-value function which is readily constructed.  相似文献   

15.
Abstract

Quetelet’s data on Scottish chest girths are analyzed with eight normality tests. In contrast to Quetelet’s conclusion that the data are fit well by what is now known as the normal distribution, six of eight normality tests provide strong evidence that the chest circumferences are not normally distributed. Using corrected chest circumferences from Stigler, the χ2 test no longer provides strong evidence against normality, but five commonly used normality tests do. The D’Agostino–Pearson K2 and Jarque–Bera tests, based only on skewness and kurtosis, find that both Quetelet’s original data and the Stigler-corrected data are consistent with the hypothesis of normality. The major reason causing most normality tests to produce low p-values, indicating that Quetelet’s data are not normally distributed, is that the chest circumferences were reported in whole inches and rounding of large numbers of observations can produce many tied values that strongly affect most normality tests. Users should be cautious using many standard normality tests if data have ties, are rounded, and the ratio of the standard deviation to rounding interval is small.  相似文献   

16.
The coefficient of determination (R 2) is perhaps the single most extensively used measure of goodness of fit for regression models. It is also widely misused. The primary source of the problem is that except for linear models with an intercept term, the several alternative R 2 statistics are not generally equivalent. This article discusses various considerations and potential pitfalls in using the R 2's. Specific points are exemplified by means of empirical data. A new resistant statistic is also introduced.  相似文献   

17.
ABSTRACT

Various approaches can be used to construct a model from a null distribution and a test statistic. I prove that one such approach, originating with D. R. Cox, has the property that the p-value is never greater than the Generalized Likelihood Ratio (GLR). When combined with the general result that the GLR is never greater than any Bayes factor, we conclude that, under Cox’s model, the p-value is never greater than any Bayes factor. I also provide a generalization, illustrations for the canonical Normal model, and an alternative approach based on sufficiency. This result is relevant for the ongoing discussion about the evidential value of small p-values, and the movement among statisticians to “redefine statistical significance.”  相似文献   

18.
The paper considers a significance test of regression variables in the high-dimensional linear regression model when the dimension of the regression variables p, together with the sample size n, tends to infinity. Under two sightly different cases, we proved that the likelihood ratio test statistic will converge in distribution to a Gaussian random variable, and the explicit expressions of the asymptotical mean and covariance are also obtained. The simulations demonstrate that our high-dimensional likelihood ratio test method outperforms those using the traditional methods in analyzing high-dimensional data.  相似文献   

19.
The econometrics literature contains many alternative measures of goodness of fit, roughly analogous to R 2, for use with equations with dichotomous dependent variables. There is, however, no consensus as to the measures' relative merits or about which ones should be reported in empirical work. This article proposes a new measure that possesses several useful properties that the other measures lack. The new measure may be interpreted intuitively in a similar way to R 2 in the linear regression context.  相似文献   

20.
While it is often argued that a p-value is a probability; see Wasserstein and Lazar, we argue that a p-value is not defined as a probability. A p-value is a bijection of the sufficient statistic for a given test which maps to the same scale as the Type I error probability. As such, the use of p-values in a test should be no more a source of controversy than the use of a sufficient statistic. It is demonstrated that there is, in fact, no ambiguity about what a p-value is, contrary to what has been claimed in recent public debates in the applied statistics community. We give a simple example to illustrate that rejecting the use of p-values in testing for a normal mean parameter is conceptually no different from rejecting the use of a sample mean. The p-value is innocent; the problem arises from its misuse and misinterpretation. The way that p-values have been informally defined and interpreted appears to have led to tremendous confusion and controversy regarding their place in statistical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号