首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the diverse frameworks that have been proposed for regression analysis of angular data, the projected multivariate linear model provides a particularly appealing and tractable methodology. In this model, the observed directional responses are assumed to correspond to the angles formed by latent bivariate normal random vectors that are assumed to depend upon covariates through a linear model. This implies an angular normal distribution for the observed angles, and incorporates a regression structure through a familiar and convenient relationship. In this paper we extend this methodology to accommodate clustered data (e.g., longitudinal or repeated measures data) by formulating a marginal version of the model and basing estimation on an EM‐like algorithm in which correlation among within‐cluster responses is taken into account by incorporating a working correlation matrix into the M step. A sandwich estimator is used for the parameter estimates’ covariance matrix. The methodology is motivated and illustrated using an example involving clustered measurements of microbril angle on loblolly pine (Pinus taeda L.) Simulation studies are presented that evaluate the finite sample properties of the proposed fitting method. In addition, the relationship between within‐cluster correlation on the latent Euclidean vectors and the corresponding correlation structure for the observed angles is explored.  相似文献   

2.
A model for directional data in q dimensions is studied. The data are assumed to arise from a distribution with a density on a sphere of q — 1 dimensions. The density is unimodal and rotationally symmetric, but otherwise of unknown form. The posterior distribution of the unknown mode (mean direction) is derived, and small-sample posterior inference is discussed. The posterior mean of the density is also given. A numerical method for evaluating posterior quantities based on sampling a Markov chain is introduced. This method is generally applicable to problems involving unknown monotone functions.  相似文献   

3.
We derive likelihood ratio tests for the equality of the directional parameters of k bipolar Watson distributions defined on the hypersphere with common concentration parameter. We analyze the power of these tests in the case of two distributions supposing in the alternative hypothesis two directional parameters forming an angle, which varies from 18° to 90°. We also compare the likelihood ratio tests with a high-concentration F-test.  相似文献   

4.
This article considers a partially linear panel data model with fixed individual and time effects in a setting where both N and T are large. Based on the within transformation and profile likelihood method, we propose an approach to estimating the parametric and non parametric components of the partially linear model. The resultant estimators are shown to be consistent and asymptotically normal. Monte Carlo simulations are also conducted to illustrate the finite-sample performance of the proposed estimators.  相似文献   

5.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

6.
ABSTRACT

We present a decomposition of prediction error for the multilevel model in the context of predicting a future observable y *j in the jth group of a hierarchical dataset. The multilevel prediction rule is used for prediction and the components of prediction error are estimated via a simulation study that spans the various combinations of level-1 (individual) and level-2 (group) sample sizes and different intraclass correlation values. Additionally, analytical results present the increase in predicted mean square error (PMSE) with respect to prediction error bias. The components of prediction error provide information with respect to the cost of parameter estimation versus data imputation for predicting future values in a hierarchical data set. Specifically, the cost of parameter estimation is very small compared to data imputation.  相似文献   

7.
This article considers a k level step-stress accelerated life testing (ALT) on series system products, where independent Weibull-distributed lifetimes are assumed for the components. Due to cost considerations or environmental restrictions, causes of system failures are masked and type-I censored observations might occur in the collected data. Bayesian approach combined with auxiliary variables is developed for estimating the parameters of the model. Further, the reliability and hazard rate functions of the system and components are estimated at a specified time at use stress level. The proposed method is illustrated through a numerical example based on two priors and various masking probabilities.  相似文献   

8.
Semiparametric Analysis of Truncated Data   总被引:1,自引:0,他引:1  
Randomly truncated data are frequently encountered in many studies where truncation arises as a result of the sampling design. In the literature, nonparametric and semiparametric methods have been proposed to estimate parameters in one-sample models. This paper considers a semiparametric model and develops an efficient method for the estimation of unknown parameters. The model assumes that K populations have a common probability distribution but the populations are observed subject to different truncation mechanisms. Semiparametric likelihood estimation is studied and the corresponding inferences are derived for both parametric and nonparametric components in the model. The method can also be applied to two-sample problems to test the difference of lifetime distributions. Simulation results and a real data analysis are presented to illustrate the methods.  相似文献   

9.
New Metropolis–Hastings algorithms using directional updates are introduced in this paper. Each iteration of a directional Metropolis–Hastings algorithm consists of three steps (i) generate a line by sampling an auxiliary variable, (ii) propose a new state along the line, and (iii) accept/reject according to the Metropolis–Hastings acceptance probability. We consider two classes of directional updates. The first uses a point in n as auxiliary variable, the second an auxiliary direction vector. The proposed algorithms generalize previous directional updating schemes since we allow the distribution of the auxiliary variable to depend on properties of the target at the current state. By letting the proposal distribution along the line depend on the density of the auxiliary variable, we identify proposal mechanisms that give unit acceptance rate. When we use direction vector as auxiliary variable, we get the advantageous effect of large moves in the Markov chain and hence the autocorrelation length of the samples is small. We apply the directional Metropolis–Hastings algorithms to a Gaussian example, a mixture of Gaussian densities, and a Bayesian model for seismic data.  相似文献   

10.
11.
We propose novel parametric concentric multi‐unimodal small‐subsphere families of densities for p ? 1 ≥ 2‐dimensional spherical data. Their parameters describe a common axis for K small hypersubspheres, an array of K directional modes, one mode for each subsphere, and K pairs of concentrations parameters, each pair governing horizontal (within the subsphere) and vertical (orthogonal to the subsphere) concentrations. We introduce two kinds of distributions. In its one‐subsphere version, the first kind coincides with a special case of the Fisher–Bingham distribution, and the second kind is a novel adaption that models independent horizontal and vertical variations. In its multisubsphere version, the second kind allows for a correlation of horizontal variation over different subspheres. In medical imaging, the situation of p ? 1 = 2 occurs precisely in modeling the variation of a skeletally represented organ shape due to rotation, twisting, and bending. For both kinds, we provide new computationally feasible algorithms for simulation and estimation and propose several tests. To the best knowledge of the authors, our proposed models are the first to treat the variation of directional data along several concentric small hypersubspheres, concentrated near modes on each subsphere, let alone horizontal dependence. Using several simulations, we show that our methods are more powerful than a recent nonparametric method and ad hoc methods. Using data from medical imaging, we demonstrate the advantage of our method and infer on the dominating axis of rotation of the human knee joint at different walking phases.  相似文献   

12.
This paper focuses on the analysis of errors between a flight trajectory prediction model and flight data. A novel stochastic prediction flight model is compared with the popular fly-by and fly-over turn models. The propagated error is measured using either spatial coordinates or angles. Depending on the case, the distribution of error is estimated and confidence bounds for the linear and directional mean are provided for all three stochastic flight models.  相似文献   

13.
This article is concerned with testing multiple hypotheses, one for each of a large number of small data sets. Such data are sometimes referred to as high-dimensional, low-sample size data. Our model assumes that each observation within a randomly selected small data set follows a mixture of C shifted and rescaled versions of an arbitrary density f. A novel kernel density estimation scheme, in conjunction with clustering methods, is applied to estimate f. Bayes information criterion and a new criterion weighted mean of within-cluster variances are used to estimate C, which is the number of mixture components or clusters. These results are applied to the multiple testing problem. The null sampling distribution of each test statistic is determined by f, and hence a bootstrap procedure that resamples from an estimate of f is used to approximate this null distribution.  相似文献   

14.
We propose a flexible semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data. The model can handle either single cycle or, more generally, multiple consecutive cycle data. The approach models the mean of responses by parametric fixed effects and a smooth nonparametric function for the underlying time effects, and the relationship across the bivariate responses by a bivariate Gaussian random field and a joint distribution of random effects. The proposed model not only can model complicated individual profiles, but also allows for more flexible within-subject and between-response correlations. The fixed effects regression coefficients and the nonparametric time functions are estimated using maximum penalized likelihood, where the resulting estimator for the nonparametric time function is a cubic smoothing spline. The smoothing parameters and variance components are estimated simultaneously using restricted maximum likelihood. Simulation results show that the parameter estimates are close to the true values. The fit of the proposed model on a real bivariate longitudinal dataset of pre-menopausal women also performs well, both for a single cycle analysis and for a multiple consecutive cycle analysis. The Canadian Journal of Statistics 48: 471–498; 2020 © 2020 Statistical Society of Canada  相似文献   

15.
When a two-level multilevel model (MLM) is used for repeated growth data, the individuals constitute level 2 and the successive measurements constitute level 1, which is nested within the individuals that make up level 2. The heterogeneity among individuals is represented by either the random-intercept or random-coefficient (slope) model. The variance components at level 1 involve serial effects and measurement errors under constant variance or heteroscedasticity. This study hypothesizes that missing serial effects or/and heteroscedasticity may bias the results obtained from two-level models. To illustrate this effect, we conducted two simulation studies, where the simulated data were based on the characteristics of an empirical mouse tumour data set. The results suggest that for repeated growth data with constant variance (measurement error) and misspecified serial effects (ρ > 0.3), the proportion of level-2 variation (intra-class correlation coefficient) increases with ρ and the two-level random-coefficient model is the minimum AIC (or AICc) model when compared with the fixed model, heteroscedasticity model, and random-intercept model. In addition, the serial effect (ρ > 0.1) and heteroscedasticity are both misspecified, implying that the two-level random-coefficient model is the minimum AIC (or AICc) model when compared with the fixed model and random-intercept model. This study demonstrates that missing serial effects and/or heteroscedasticity may indicate heterogeneity among individuals in repeated growth data (mixed or two-level MLM). This issue is critical in biomedical research.  相似文献   

16.
We consider the situation where there is a known regression model that can be used to predict an outcome, Y, from a set of predictor variables X . A new variable B is expected to enhance the prediction of Y. A dataset of size n containing Y, X and B is available, and the challenge is to build an improved model for Y| X ,B that uses both the available individual level data and some summary information obtained from the known model for Y| X . We propose a synthetic data approach, which consists of creating m additional synthetic data observations, and then analyzing the combined dataset of size n + m to estimate the parameters of the Y| X ,B model. This combined dataset of size n + m now has missing values of B for m of the observations, and is analyzed using methods that can handle missing data (e.g., multiple imputation). We present simulation studies and illustrate the method using data from the Prostate Cancer Prevention Trial. Though the synthetic data method is applicable to a general regression context, to provide some justification, we show in two special cases that the asymptotic variances of the parameter estimates in the Y| X ,B model are identical to those from an alternative constrained maximum likelihood estimation approach. This correspondence in special cases and the method's broad applicability makes it appealing for use across diverse scenarios. The Canadian Journal of Statistics 47: 580–603; 2019 © 2019 Statistical Society of Canada  相似文献   

17.
In life-testing and survival analysis, sometimes the components are arranged in series or parallel system and the number of components is initially unknown. Thus, the number of components, say Z, is considered as random with an appropriate probability mass function. In this paper, we model the survival data with baseline distribution as Weibull and the distribution of Z as generalized Poisson, giving rise to four parameters in the model: increasing, decreasing, bathtub and upside bathtub failure rates. Two examples are provided and the maximum-likelihood estimation of the parameters is studied. Rao's score test is developed to compare the results with the exponential Poisson model studied by Kus [17] and the exponential-generalized Poisson distribution with baseline distribution as exponential and the distribution of Z as generalized Poisson. Simulation studies are carried out to examine the performance of the estimates.  相似文献   

18.
This article considers the estimation and testing of a within-group two-stage least squares (TSLS) estimator for instruments with varying degrees of weakness in a longitudinal (panel) data model. We show that adding the repeated cross-sectional information into a regression model can improve the estimation in weak instruments. Moreover, the consistency and limiting distribution of the TSLS estimator are established when both N and T tend to infinity. Some asymptotically pivotal tests are extended to a longitudinal data model and their asymptotic properties are examined. A Monte Carlo experiment is conducted to evaluate the finite sample performance of the proposed estimators.  相似文献   

19.
Modeling cylindrical data, comprised of a linear component and a directional component, can be done using Fourier series expansions if we consider the conditional distribution of the linear component given the angular component. This paper presents the second order model which is a natural extension of the Mardia and Sutton (1978) first order model. This model can be parameterized either in polar or Cartesian coordinates, and allows for parameter estimation using standard multiple linear regression. Characteristic of the new model, how to compare the adequacy of the fit for first and second order models, and an example involving wind direction and temperature are presented.  相似文献   

20.
Generally it is very difficult to construct robust slope-rotatable designs along axial directions. Present paper focuses on modified second-order slope-rotatable designs (SOSRDs) with correlated errors. Modified robust second-order slope-rotatability conditions are derived for a general variance–covariance structure of errors. These conditions get simplified for intraclass correlation structure. A few robust second-order slope-rotatable designs (over all directions, or with equal maximum directional variance slope, or D-optimal slope) are examined with respect to modified robust slope-rotatability. It is observed that robust second-order slope-rotatable designs over all directions, or with equal maximum directional variance slope, or D-optimal slope are not generally modified robust second-order slope-rotatable designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号