首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As the number of applications for Markov Chain Monte Carlo (MCMC) grows, the power of these methods as well as their shortcomings become more apparent. While MCMC yields an almost automatic way to sample a space according to some distribution, its implementations often fall short of this task as they may lead to chains which converge too slowly or get trapped within one mode of a multi-modal space. Moreover, it may be difficult to determine if a chain is only sampling a certain area of the space or if it has indeed reached stationarity. In this paper, we show how a simple modification of the proposal mechanism results in faster convergence of the chain and helps to circumvent the problems described above. This mechanism, which is based on an idea from the field of “small-world” networks, amounts to adding occasional “wild” proposals to any local proposal scheme. We demonstrate through both theory and extensive simulations, that these new proposal distributions can greatly outperform the traditional local proposals when it comes to exploring complex heterogenous spaces and multi-modal distributions. Our method can easily be applied to most, if not all, problems involving MCMC and unlike many other remedies which improve the performance of MCMC it preserves the simplicity of the underlying algorithm.  相似文献   

2.
In this paper, we present an adaptive evolutionary Monte Carlo algorithm (AEMC), which combines a tree-based predictive model with an evolutionary Monte Carlo sampling procedure for the purpose of global optimization. Our development is motivated by sensor placement applications in engineering, which requires optimizing certain complicated “black-box” objective function. The proposed method is able to enhance the optimization efficiency and effectiveness as compared to a few alternative strategies. AEMC falls into the category of adaptive Markov chain Monte Carlo (MCMC) algorithms and is the first adaptive MCMC algorithm that simulates multiple Markov chains in parallel. A theorem about the ergodicity property of the AEMC algorithm is stated and proven. We demonstrate the advantages of the proposed method by applying it to a sensor placement problem in a manufacturing process, as well as to a standard Griewank test function.  相似文献   

3.
Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and likelihood) using Markov Chain Monte Carlo (MCMC) simulation. This paper integrates the essential ideas of DE and MCMC, resulting in Differential Evolution Markov Chain (DE-MC). DE-MC is a population MCMC algorithm, in which multiple chains are run in parallel. DE-MC solves an important problem in MCMC, namely that of choosing an appropriate scale and orientation for the jumping distribution. In DE-MC the jumps are simply a fixed multiple of the differences of two random parameter vectors that are currently in the population. The selection process of DE-MC works via the usual Metropolis ratio which defines the probability with which a proposal is accepted. In tests with known uncertainty distributions, the efficiency of DE-MC with respect to random walk Metropolis with optimal multivariate Normal jumps ranged from 68% for small population sizes to 100% for large population sizes and even to 500% for the 97.5% point of a variable from a 50-dimensional Student distribution. Two Bayesian examples illustrate the potential of DE-MC in practice. DE-MC is shown to facilitate multidimensional updates in a multi-chain “Metropolis-within-Gibbs” sampling approach. The advantage of DE-MC over conventional MCMC are simplicity, speed of calculation and convergence, even for nearly collinear parameters and multimodal densities.  相似文献   

4.
In empirical Bayes inference one is typically interested in sampling from the posterior distribution of a parameter with a hyper-parameter set to its maximum likelihood estimate. This is often problematic particularly when the likelihood function of the hyper-parameter is not available in closed form and the posterior distribution is intractable. Previous works have dealt with this problem using a multi-step approach based on the EM algorithm and Markov Chain Monte Carlo (MCMC). We propose a framework based on recent developments in adaptive MCMC, where this problem is addressed more efficiently using a single Monte Carlo run. We discuss the convergence of the algorithm and its connection with the EM algorithm. We apply our algorithm to the Bayesian Lasso of Park and Casella (J. Am. Stat. Assoc. 103:681–686, 2008) and on the empirical Bayes variable selection of George and Foster (J. Am. Stat. Assoc. 87:731–747, 2000).  相似文献   

5.
We introduce a general Monte Carlo method based on Nested Sampling (NS), for sampling complex probability distributions and estimating the normalising constant. The method uses one or more particles, which explore a mixture of nested probability distributions, each successive distribution occupying ∼e −1 times the enclosed prior mass of the previous distribution. While NS technically requires independent generation of particles, Markov Chain Monte Carlo (MCMC) exploration fits naturally into this technique. We illustrate the new method on a test problem and find that it can achieve four times the accuracy of classic MCMC-based Nested Sampling, for the same computational effort; equivalent to a factor of 16 speedup. An additional benefit is that more samples and a more accurate evidence value can be obtained simply by continuing the run for longer, as in standard MCMC.  相似文献   

6.
Model based labeling for mixture models   总被引:1,自引:0,他引:1  
Label switching is one of the fundamental problems for Bayesian mixture model analysis. Due to the permutation invariance of the mixture posterior, we can consider that the posterior of a m-component mixture model is a mixture distribution with m! symmetric components and therefore the object of labeling is to recover one of the components. In order to do labeling, we propose to first fit a symmetric m!-component mixture model to the Markov chain Monte Carlo (MCMC) samples and then choose the label for each sample by maximizing the corresponding classification probabilities, which are the probabilities of all possible labels for each sample. Both parametric and semi-parametric ways are proposed to fit the symmetric mixture model for the posterior. Compared to the existing labeling methods, our proposed method aims to approximate the posterior directly and provides the labeling probabilities for all possible labels and thus has a model explanation and theoretical support. In addition, we introduce a situation in which the “ideally” labeled samples are available and thus can be used to compare different labeling methods. We demonstrate the success of our new method in dealing with the label switching problem using two examples.  相似文献   

7.
Propp and Wilson (Random Structures and Algorithms (1996) 9: 223–252, Journal of Algorithms (1998) 27: 170–217) described a protocol called coupling from the past (CFTP) for exact sampling from the steady-state distribution of a Markov chain Monte Carlo (MCMC) process. In it a past time is identified from which the paths of coupled Markov chains starting at every possible state would have coalesced into a single value by the present time; this value is then a sample from the steady-state distribution.Unfortunately, producing an exact sample typically requires a large computational effort. We consider the question of how to make efficient use of the sample values that are generated. In particular, we make use of regeneration events (cf. Mykland et al. Journal of the American Statistical Association (1995) 90: 233–241) to aid in the analysis of MCMC runs. In a regeneration event, the chain is in a fixed reference distribution– this allows the chain to be broken up into a series of tours which are independent, or nearly so (though they do not represent draws from the true stationary distribution).In this paper we consider using the CFTP and related algorithms to create tours. In some cases their elements are exactly in the stationary distribution; their length may be fixed or random. This allows us to combine the precision of exact sampling with the efficiency of using entire tours.Several algorithms and estimators are proposed and analysed.  相似文献   

8.

Bayesian analysis often concerns an evaluation of models with different dimensionality as is necessary in, for example, model selection or mixture models. To facilitate this evaluation, transdimensional Markov chain Monte Carlo (MCMC) relies on sampling a discrete indexing variable to estimate the posterior model probabilities. However, little attention has been paid to the precision of these estimates. If only few switches occur between the models in the transdimensional MCMC output, precision may be low and assessment based on the assumption of independent samples misleading. Here, we propose a new method to estimate the precision based on the observed transition matrix of the model-indexing variable. Assuming a first-order Markov model, the method samples from the posterior of the stationary distribution. This allows assessment of the uncertainty in the estimated posterior model probabilities, model ranks, and Bayes factors. Moreover, the method provides an estimate for the effective sample size of the MCMC output. In two model selection examples, we show that the proposed approach provides a good assessment of the uncertainty associated with the estimated posterior model probabilities.

  相似文献   

9.
In this paper, we discuss a fully Bayesian quantile inference using Markov Chain Monte Carlo (MCMC) method for longitudinal data models with random effects. Under the assumption of error term subject to asymmetric Laplace distribution, we establish a hierarchical Bayesian model and obtain the posterior distribution of unknown parameters at τ-th level. We overcome the current computational limitations using two approaches. One is the general MCMC technique with Metropolis–Hastings algorithm and another is the Gibbs sampling from the full conditional distribution. These two methods outperform the traditional frequentist methods under a wide array of simulated data models and are flexible enough to easily accommodate changes in the number of random effects and in their assumed distribution. We apply the Gibbs sampling method to analyse a mouse growth data and some different conclusions from those in the literatures are obtained.  相似文献   

10.
The paper analyses the biasing effect of anonymising micro data by multiplicative stochastic noise on the within estimation of a linear panel model. In short panels, additional bias results from serially correlated regressors. Results in this paper are related to the project “Firms’ Panel Data and Factual Anonymisation,” which is financed by Federal Ministry of Education and Research. We would like to thank the anonymous referees for helpful comments.  相似文献   

11.
Computation of normalizing constants is a fundamental mathematical problem in various disciplines, particularly in Bayesian model selection problems. A sampling-based technique known as bridge sampling (Meng and Wong in Stat Sin 6(4):831–860, 1996) has been found to produce accurate estimates of normalizing constants and is shown to possess good asymptotic properties. For small to moderate sample sizes (as in situations with limited computational resources), we demonstrate that the (optimal) bridge sampler produces biased estimates. Specifically, when one density (we denote as $$p_2$$) is constructed to be close to the target density (we denote as $$p_1$$) using method of moments, our simulation-based results indicate that the correlation-induced bias through the moment-matching procedure is non-negligible. More crucially, the bias amplifies as the dimensionality of the problem increases. Thus, a series of theoretical as well as empirical investigations is carried out to identify the nature and origin of the bias. We then examine the effect of sample size allocation on the accuracy of bridge sampling estimates and discovered that one possibility of reducing both the bias and standard error with a small increase in computational effort is by drawing extra samples from the moment-matched density $$p_2$$ (which we assume easy to sample from), provided that the evaluation of $$p_1$$ is not too expensive. We proceed to show how the simple adaptive approach we termed “splitting” manages to alleviate the correlation-induced bias at the expense of a higher standard error, irrespective of the dimensionality involved. We also slightly modified the strategy suggested by Wang et al. (Warp bridge sampling: the next generation, Preprint, 2019. arXiv:1609.07690) to address the issue of the increase in standard error due to splitting, which is later generalized to further improve the efficiency. We conclude the paper by offering our insights of the application of a combination of these adaptive methods to improve the accuracy of bridge sampling estimates in Bayesian applications (where posterior samples are typically expensive to generate) based on the preceding investigations, with an application to a practical example.  相似文献   

12.
In applications of Gaussian processes (GPs) where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. This is normally done by means of standard Markov chain Monte Carlo (MCMC) algorithms, which require repeated expensive calculations involving the marginal likelihood. Motivated by the desire to avoid the inefficiencies of MCMC algorithms rejecting a considerable amount of expensive proposals, this paper develops an alternative inference framework based on adaptive multiple importance sampling (AMIS). In particular, this paper studies the application of AMIS for GPs in the case of a Gaussian likelihood, and proposes a novel pseudo-marginal-based AMIS algorithm for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios.  相似文献   

13.
The lasso is a popular technique of simultaneous estimation and variable selection in many research areas. The marginal posterior mode of the regression coefficients is equivalent to estimates given by the non-Bayesian lasso when the regression coefficients have independent Laplace priors. Because of its flexibility of statistical inferences, the Bayesian approach is attracting a growing body of research in recent years. Current approaches are primarily to either do a fully Bayesian analysis using Markov chain Monte Carlo (MCMC) algorithm or use Monte Carlo expectation maximization (MCEM) methods with an MCMC algorithm in each E-step. However, MCMC-based Bayesian method has much computational burden and slow convergence. Tan et al. [An efficient MCEM algorithm for fitting generalized linear mixed models for correlated binary data. J Stat Comput Simul. 2007;77:929–943] proposed a non-iterative sampling approach, the inverse Bayes formula (IBF) sampler, for computing posteriors of a hierarchical model in the structure of MCEM. Motivated by their paper, we develop this IBF sampler in the structure of MCEM to give the marginal posterior mode of the regression coefficients for the Bayesian lasso, by adjusting the weights of importance sampling, when the full conditional distribution is not explicit. Simulation experiments show that the computational time is much reduced with our method based on the expectation maximization algorithm and our algorithms and our methods behave comparably with other Bayesian lasso methods not only in prediction accuracy but also in variable selection accuracy and even better especially when the sample size is relatively large.  相似文献   

14.
In this article we propose a novel non-parametric sampling approach to estimate posterior distributions from parameters of interest. Starting from an initial sample over the parameter space, this method makes use of this initial information to form a geometrical structure known as Voronoi tessellation over the whole parameter space. This rough approximation to the posterior distribution provides a way to generate new points from the posterior distribution without any additional costly model evaluations. By using a traditional Markov Chain Monte Carlo (MCMC) over the non-parametric tessellation, the initial approximate distribution is refined sequentially. We applied this method to a couple of climate models to show that this hybrid scheme successfully approximates the posterior distribution of the model parameters.  相似文献   

15.
We introduce Markov Chain Importance Sampling (MCIS), which combines importance sampling (IS) and Markov Chain Monte Carlo (MCMC) to estimate some characteristics of a non-normalized multi-dimensional distribution. Especially, we introduce some importance functions whose variates are regeneratively generated by MCMC; these variates then are used to estimate the quantity of interest through IS. Because MCIS is regenerative, it overcomes the burn-in problem associated with MCMC. It could also speed up the mixing rate in MCMC.  相似文献   

16.
Markov chain Monte Carlo (MCMC) sampling is a numerically intensive simulation technique which has greatly improved the practicality of Bayesian inference and prediction. However, MCMC sampling is too slow to be of practical use in problems involving a large number of posterior (target) distributions, as in dynamic modelling and predictive model selection. Alternative simulation techniques for tracking moving target distributions, known as particle filters, which combine importance sampling, importance resampling and MCMC sampling, tend to suffer from a progressive degeneration as the target sequence evolves. We propose a new technique, based on these same simulation methodologies, which does not suffer from this progressive degeneration.  相似文献   

17.
We consider the issue of sampling from the posterior distribution of exponential random graph (ERG) models and other statistical models with intractable normalizing constants. Existing methods based on exact sampling are either infeasible or require very long computing time. We study a class of approximate Markov chain Monte Carlo (MCMC) sampling schemes that deal with this issue. We also develop a new Metropolis–Hastings kernel to sample sparse large networks from ERG models. We illustrate the proposed methods on several examples.  相似文献   

18.
On Block Updating in Markov Random Field Models for Disease Mapping   总被引:3,自引:0,他引:3  
Gaussian Markov random field (GMRF) models are commonly used to model spatial correlation in disease mapping applications. For Bayesian inference by MCMC, so far mainly single-site updating algorithms have been considered. However, convergence and mixing properties of such algorithms can be extremely poor due to strong dependencies of parameters in the posterior distribution. In this paper, we propose various block sampling algorithms in order to improve the MCMC performance. The methodology is rather general, allows for non-standard full conditionals, and can be applied in a modular fashion in a large number of different scenarios. For illustration we consider three different applications: two formulations for spatial modelling of a single disease (with and without additional unstructured parameters respectively), and one formulation for the joint analysis of two diseases. The results indicate that the largest benefits are obtained if parameters and the corresponding hyperparameter are updated jointly in one large block. Implementation of such block algorithms is relatively easy using methods for fast sampling of Gaussian Markov random fields ( Rue, 2001 ). By comparison, Monte Carlo estimates based on single-site updating can be rather misleading, even for very long runs. Our results may have wider relevance for efficient MCMC simulation in hierarchical models with Markov random field components.  相似文献   

19.
In the expectation–maximization (EM) algorithm for maximum likelihood estimation from incomplete data, Markov chain Monte Carlo (MCMC) methods have been used in change-point inference for a long time when the expectation step is intractable. However, the conventional MCMC algorithms tend to get trapped in local mode in simulating from the posterior distribution of change points. To overcome this problem, in this paper we propose a stochastic approximation Monte Carlo version of EM (SAMCEM), which is a combination of adaptive Markov chain Monte Carlo and EM utilizing a maximum likelihood method. SAMCEM is compared with the stochastic approximation version of EM and reversible jump Markov chain Monte Carlo version of EM on simulated and real datasets. The numerical results indicate that SAMCEM can outperform among the three methods by producing much more accurate parameter estimates and the ability to achieve change-point positions and estimates simultaneously.  相似文献   

20.
Algebraic exact inference for rater agreement models   总被引:1,自引:0,他引:1  
In recent years, a method for sampling from conditional distributions for categorical data has been presented by Diaconis and Sturmfels. Their algorithm is based on the algebraic theory of toric ideals which are used to create so called “Markov Bases”. The Diaconis-Sturmfels algorithm leads to a non-asymptotic Monte Carlo Markov Chain algorithm for exact inference on some classes of models, such as log-linear models. In this paper we apply the Diaconis-Sturmfels algorithm to a set of models arising from the rater agreement problem with special attention to the multi-rater case. The relevant Markov bases are explicitly computed and some results for simplify the computation are presented. An extended example on a real data set shows the wide applicability of this methodology. Partially supported by MIUR Cofin03 (G. Consonni) and by INdAM projectAlgebraic Statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号