首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We begin by recalling the tripartite division of statistical problems into three classes, M-closed, M-complete, and M-open and then reviewing the key ideas of introductory Shannon theory. Focusing on the related but distinct goals of model selection and prediction, we argue that different techniques for these two goals are appropriate for the three different problem classes. For M-closed problems we give relative entropy justification that the Bayes information criterion (BIC) is appropriate for model selection and that the Bayes model average is information optimal for prediction. For M-complete problems, we discuss the principle of maximum entropy and a way to use the rate distortion function to bypass the inaccessibility of the true distribution. For prediction in the M-complete class, there is little work done on information based model averaging so we discuss the Akaike information criterion (AIC) and its properties and variants.

For the M-open class, we argue that essentially only predictive criteria are suitable. Thus, as an analog to model selection, we present the key ideas of prediction along a string under a codelength criterion and propose a general form of this criterion. Since little work appears to have been done on information methods for general prediction in the M-open class of problems, we mention the field of information theoretic learning in certain general function spaces.  相似文献   

2.
The results of analyzing experimental data using a parametric model may heavily depend on the chosen model for regression and variance functions, moreover also on a possibly underlying preliminary transformation of the variables. In this paper we propose and discuss a complex procedure which consists in a simultaneous selection of parametric regression and variance models from a relatively rich model class and of Box-Cox variable transformations by minimization of a cross-validation criterion. For this it is essential to introduce modifications of the standard cross-validation criterion adapted to each of the following objectives: 1. estimation of the unknown regression function, 2. prediction of future values of the response variable, 3. calibration or 4. estimation of some parameter with a certain meaning in the corresponding field of application. Our idea of a criterion oriented combination of procedures (which usually if applied, then in an independent or sequential way) is expected to lead to more accurate results. We show how the accuracy of the parameter estimators can be assessed by a “moment oriented bootstrap procedure", which is an essential modification of the “wild bootstrap” of Härdle and Mammen by use of more accurate variance estimates. This new procedure and its refinement by a bootstrap based pivot (“double bootstrap”) is also used for the construction of confidence, prediction and calibration intervals. Programs written in Splus which realize our strategy for nonlinear regression modelling and parameter estimation are described as well. The performance of the selected model is discussed, and the behaviour of the procedures is illustrated, e.g., by an application in radioimmunological assay.  相似文献   

3.
When spatial data are correlated, currently available data‐driven smoothing parameter selection methods for nonparametric regression will often fail to provide useful results. The authors propose a method that adjusts the generalized cross‐validation criterion for the effect of spatial correlation in the case of bivariate local polynomial regression. Their approach uses a pilot fit to the data and the estimation of a parametric covariance model. The method is easy to implement and leads to improved smoothing parameter selection, even when the covariance model is misspecified. The methodology is illustrated using water chemistry data collected in a survey of lakes in the Northeastern United States.  相似文献   

4.
Abstract.  Prediction error is critical to assess model fit and evaluate model prediction. We propose the cross-validation (CV) and approximated CV methods for estimating prediction error under the Bregman divergence (BD), which embeds nearly all of the commonly used loss functions in the regression, classification procedures and machine learning literature. The approximated CV formulas are analytically derived, which facilitate fast estimation of prediction error under BD. We then study a data-driven optimal bandwidth selector for local-likelihood estimation that minimizes the overall prediction error or equivalently the covariance penalty. It is shown that the covariance penalty and CV methods converge to the same mean-prediction-error-criterion. We also propose a lower-bound scheme for computing the local logistic regression estimates and demonstrate that the algorithm monotonically enhances the target local likelihood and converges. The idea and methods are extended to the generalized varying-coefficient models and additive models.  相似文献   

5.
The main focus of our paper is to compare the performance of different model selection criteria used for multivariate reduced rank time series. We consider one of the most commonly used reduced rank model, that is, the reduced rank vector autoregression (RRVAR (p, r)) introduced by Velu et al. [Reduced rank models for multiple time series. Biometrika. 1986;7(31):105–118]. In our study, the most popular model selection criteria are included. The criteria are divided into two groups, that is, simultaneous selection and two-step selection criteria, accordingly. Methods from the former group select both an autoregressive order p and a rank r simultaneously, while in the case of two-step criteria, first an optimal order p is chosen (using model selection criteria intended for the unrestricted VAR model) and then an optimal rank r of coefficient matrices is selected (e.g. by means of sequential testing). Considered model selection criteria include well-known information criteria (such as Akaike information criterion, Schwarz criterion, Hannan–Quinn criterion, etc.) as well as widely used sequential tests (e.g. the Bartlett test) and the bootstrap method. An extensive simulation study is carried out in order to investigate the efficiency of all model selection criteria included in our study. The analysis takes into account 34 methods, including 6 simultaneous methods and 28 two-step approaches, accordingly. In order to carefully analyse how different factors affect performance of model selection criteria, we consider over 150 simulation settings. In particular, we investigate the influence of the following factors: time series dimension, different covariance structure, different level of correlation among components and different level of noise (variance). Moreover, we analyse the prediction accuracy concerned with the application of the RRVAR model and compare it with results obtained for the unrestricted vector autoregression. In this paper, we also present a real data application of model selection criteria for the RRVAR model using the Polish macroeconomic time series data observed in the period 1997–2007.  相似文献   

6.
We consider a linear regression model, with the parameter of interest a specified linear combination of the components of the regression parameter vector. We suppose that, as a first step, a data-based model selection (e.g. by preliminary hypothesis tests or minimizing the Akaike information criterion – AIC) is used to select a model. It is common statistical practice to then construct a confidence interval for the parameter of interest, based on the assumption that the selected model had been given to us  a priori . This assumption is false, and it can lead to a confidence interval with poor coverage properties. We provide an easily computed finite-sample upper bound (calculated by repeated numerical evaluation of a double integral) to the minimum coverage probability of this confidence interval. This bound applies for model selection by any of the following methods: minimum AIC, minimum Bayesian information criterion (BIC), maximum adjusted  R 2, minimum Mallows'   C P   and  t -tests. The importance of this upper bound is that it delineates general categories of design matrices and model selection procedures for which this confidence interval has poor coverage properties. This upper bound is shown to be a finite-sample analogue of an earlier large-sample upper bound due to Kabaila and Leeb.  相似文献   

7.
Stepwise variable selection procedures are computationally inexpensive methods for constructing useful regression models for a single dependent variable. At each step a variable is entered into or deleted from the current model, based on the criterion of minimizing the error sum of squares (SSE). When there is more than one dependent variable, the situation is more complex. In this article we propose variable selection criteria for multivariate regression which generalize the univariate SSE criterion. Specifically, we suggest minimizing some function of the estimated error covariance matrix: the trace, the determinant, or the largest eigenvalue. The computations associated with these criteria may be burdensome. We develop a computational framework based on the use of the SWEEP operator which greatly reduces these calculations for stepwise variable selection in multivariate regression.  相似文献   

8.
The predictor that minimizes mean-squared prediction error is used to derive a goodness-of-fit measure that offers an asymptotically valid model selection criterion for a wide variety of regression models. In particular, a new goodness-of-fit criterion (cr2) is proposed for censored or otherwise limited dependent variables. The new goodness-of-fit measure is then applied to the analysis of duration.  相似文献   

9.
Several estimators of squared prediction error have been suggested for use in model and bandwidth selection problems. Among these are cross-validation, generalized cross-validation and a number of related techniques based on the residual sum of squares. For many situations with squared error loss, e.g. nonparametric smoothing, these estimators have been shown to be asymptotically optimal in the sense that in large samples the estimator minimizing the selection criterion also minimizes squared error loss. However, cross-validation is known not to be asymptotically optimal for some `easy' location problems. We consider selection criteria based on estimators of squared prediction risk for choosing between location estimators. We show that criteria based on adjusted residual sum of squares are not asymptotically optimal for choosing between asymptotically normal location estimators that converge at rate n 1/2but are when the rate of convergence is slower. We also show that leave-one-out cross-validation is not asymptotically optimal for choosing between √ n -differentiable statistics but leave- d -out cross-validation is optimal when d ∞ at the appropriate rate.  相似文献   

10.
Abstract: The predictor that minimizes mean-squared prediction error is used to derive a goodness-of-fit measure that offers an asymptotically valid model selection criterion for a wide variety of regression models. In particular, a new goodness-of-fit criterion (cr2) is proposed for censored or otherwise limited dependent variables. The new goodness-of-fit measure is then applied to the analysis of duration.  相似文献   

11.
Summary.  We propose covariance-regularized regression, a family of methods for prediction in high dimensional settings that uses a shrunken estimate of the inverse covariance matrix of the features to achieve superior prediction. An estimate of the inverse covariance matrix is obtained by maximizing the log-likelihood of the data, under a multivariate normal model, subject to a penalty; it is then used to estimate coefficients for the regression of the response onto the features. We show that ridge regression, the lasso and the elastic net are special cases of covariance-regularized regression, and we demonstrate that certain previously unexplored forms of covariance-regularized regression can outperform existing methods in a range of situations. The covariance-regularized regression framework is extended to generalized linear models and linear discriminant analysis, and is used to analyse gene expression data sets with multiple class and survival outcomes.  相似文献   

12.
The autoregressive (AR) model is a popular method for fitting and prediction in analyzing time-dependent data, where selecting an accurate model among considered orders is a crucial issue. Two commonly used selection criteria are the Akaike information criterion and the Bayesian information criterion. However, the two criteria are known to suffer potential problems regarding overfit and underfit, respectively. Therefore, using them would perform well in some situations, but poorly in others. In this paper, we propose a new criterion in terms of the prediction perspective based on the concept of generalized degrees of freedom for AR model selection. We derive an approximately unbiased estimator of mean-squared prediction errors based on a data perturbation technique for selecting the order parameter, where the estimation uncertainty involved in a modeling procedure is considered. Some numerical experiments are performed to illustrate the superiority of the proposed method over some commonly used order selection criteria. Finally, the methodology is applied to a real data example to predict the weekly rate of return on the stock price of Taiwan Semiconductor Manufacturing Company and the results indicate that the proposed method is satisfactory.  相似文献   

13.
The problem of ill-conditioning in generalized linear regression is investigated. Besides collinearity among the explanatory variables, we define another type of ill-conditioning, namely ML-collinearity, which has similar detrimental effects on the covariance matrix, e.g. inflation of some of the estimated standard errors of the regression coefficients. For either situation there is collinearity among the columns of the matrix of the weighted variables. We present both methods to detect, as well as practical examples to illustrate, the difference between these two types of ill-conditioning. Also the applicability of alternative regression methods will be reviewed.  相似文献   

14.
This article considers the notion of the non-diagonal-type estimator (NDTE) under the prediction error sum of squares (PRESS) criterion. First, the optimal NDTE in the PRESS sense is derived theoretically and applied to the cosmetics sales data. Second, we make a further study to extend the NDTE to the general case of the covariance matrix of the model and then give a Bayesian explanation for this extension. Third, two remarks concerned with some potential shortcomings of the NDTE are presented and an alternative solution is provided and illustrated by means of simulations.  相似文献   

15.
In order to make predictions of future values of a time series, one needs to specify a forecasting model. A popular choice is an autoregressive time‐series model, for which the order of the model is chosen by an information criterion. We propose an extension of the focused information criterion (FIC) for model‐order selection, with emphasis on a high predictive accuracy (i.e. the mean squared forecast error is low). We obtain theoretical results and illustrate by means of a simulation study and some real data examples that the FIC is a valid alternative to the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for selection of a prediction model. We also illustrate the possibility of using the FIC for purposes other than forecasting, and explore its use in an extended model.  相似文献   

16.
Clustering gene expression time course data is an important problem in bioinformatics because understanding which genes behave similarly can lead to the discovery of important biological information. Statistically, the problem of clustering time course data is a special case of the more general problem of clustering longitudinal data. In this paper, a very general and flexible model-based technique is used to cluster longitudinal data. Mixtures of multivariate t-distributions are utilized, with a linear model for the mean and a modified Cholesky-decomposed covariance structure. Constraints are placed upon the covariance structure, leading to a novel family of mixture models, including parsimonious models. In addition to model-based clustering, these models are also used for model-based classification, i.e., semi-supervised clustering. Parameters, including the component degrees of freedom, are estimated using an expectation-maximization algorithm and two different approaches to model selection are considered. The models are applied to simulated data to illustrate their efficacy; this includes a comparison with their Gaussian analogues—the use of these Gaussian analogues with a linear model for the mean is novel in itself. Our family of multivariate t mixture models is then applied to two real gene expression time course data sets and the results are discussed. We conclude with a summary, suggestions for future work, and a discussion about constraining the degrees of freedom parameter.  相似文献   

17.
We consider bridge regression models, which can produce a sparse or non-sparse model by controlling a tuning parameter in the penalty term. A crucial part of a model building strategy is the selection of the values for adjusted parameters, such as regularization and tuning parameters. Indeed, this can be viewed as a problem in selecting and evaluating the model. We propose a Bayesian selection criterion for evaluating bridge regression models. This criterion enables us to objectively select the values of the adjusted parameters. We investigate the effectiveness of our proposed modeling strategy with some numerical examples.  相似文献   

18.
19.
The number of variables in a regression model is often too large and a more parsimonious model may be preferred. Selection strategies (e.g. all-subset selection with various penalties for model complexity, or stepwise procedures) are widely used, but there are few analytical results about their properties. The problems of replication stability, model complexity, selection bias and an over-optimistic estimate of the predictive value of a model are discussed together with several proposals based on resampling methods. The methods are applied to data from a case–control study on atopic dermatitis and a clinical trial to compare two chemotherapy regimes by using a logistic regression and a Cox model. A recent proposal to use shrinkage factors to reduce the bias of parameter estimates caused by model building is extended to parameterwise shrinkage factors and is discussed as a further possibility to illustrate problems of models which are too complex. The results from the resampling approaches favour greater simplicity of the final regression model.  相似文献   

20.
Frequentist and Bayesian methods differ in many aspects but share some basic optimal properties. In real-life prediction problems, situations exist in which a model based on one of the above paradigms is preferable depending on some subjective criteria. Nonparametric classification and regression techniques, such as decision trees and neural networks, have both frequentist (classification and regression trees (CARTs) and artificial neural networks) as well as Bayesian counterparts (Bayesian CART and Bayesian neural networks) to learning from data. In this paper, we present two hybrid models combining the Bayesian and frequentist versions of CART and neural networks, which we call the Bayesian neural tree (BNT) models. BNT models can simultaneously perform feature selection and prediction, are highly flexible, and generalise well in settings with limited training observations. We study the statistical consistency of the proposed approaches and derive the optimal value of a vital model parameter. The excellent performance of the newly proposed BNT models is shown using simulation studies. We also provide some illustrative examples using a wide variety of standard regression datasets from a public available machine learning repository to show the superiority of the proposed models in comparison to popularly used Bayesian CART and Bayesian neural network models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号