首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Let G be a simple, regular graph of order n and degree δ. The independent domination number i(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. We establish new upper bounds, as functions of n and δ, for the independent domination number of regular graphs with $n/6<\delta< (3-\sqrt{5})n/2$ . Our two main theorems complement recent results of Goddard et al. (Ann. Comb., 2011) for larger values of δ.  相似文献   

2.
We prove that the edges of every even graph G=G 1+G 2 that is the join of two regular graphs G 1 and G 2 can be coloured with Δ(G) colours, whenever Δ(G)=Δ(G 1)+|V 2|. The proof of this result together with the results in De Simone and Galluccio (J. Comb. Optim. 18:417–428, 2009) states that every even graph G that is the join of two regular graphs is Class 1. The proof yields an efficient combinatorial algorithm to find a Δ(G)-edge-colouring of this type of graphs.  相似文献   

3.
Consider a graph \(G=(V,E)\) and a colouring of its edges with \(k\) colours. Then every vertex \(v\in V\) is associated with a ‘pallet’ of incident colours together with their frequencies, which sum up to the degree of \(v\) . We say that two vertices have distinct pallets if they differ in frequency of at least one colour. This is always the case if these vertices have distinct degrees. We consider an apparently the worse case, when \(G\) is regular. Suppose further that this coloured graph is being examined by a person who cannot name any given colour, but distinguishes one from another. Could we colour the edges of \(G\) so that a person suffering from such colour-blindness is certain that colour pallets of every two adjacent vertices are distinct? Using the Lopsided Lovász Local Lemma, we prove that it is possible using 15 colours for every \(d\) -regular graph with \(d\ge 960\) .  相似文献   

4.
A cyclic edge-cut of a connected graph \(G\) is an edge set, the removal of which separates two cycles. If \(G\) has a cyclic edge-cut, then it is called cyclically separable. For a cyclically separable graph \(G\), the cyclic edge connectivity of a graph \(G\), denoted by \(\lambda _c(G)\), is the minimum cardinality over all cyclic edge cuts. Let \(X\) be a non-empty proper subset of \(V(G)\). If \([X,\overline{X}]=\{xy\in E(G)\ |\ x\in X, y\in \overline{X}\}\) is a minimum cyclic edge cut of \(G\), then \(X\) is called a \(\lambda _c\) -fragment of \(G\). A \(\lambda _c\)-fragment with minimum cardinality is called a \(\lambda _c\) -atom. Let \(G\) be a \(k (k\ge 3)\)-regular cyclically separable graph with \(\lambda _c(G)<g(k-2)\), where \(g\) is the girth of \(G\). A combination of the results of Nedela and Skoviera (Math Slovaca 45:481–499, 1995) and Xu and Liu (Australas J Combin 30:41–49, 2004) gives that if \(k\ne 5\) then any two distinct \(\lambda _c\)-atoms of \(G\) are disjoint. The remaining case of \(k=5\) is considered in this paper, and a new proof for Nedela and ?koviera’s result is also given. As a result, we obtain the following result. If \(X\) and \(X'\) are two distinct \(\lambda _c\)-atoms of \(G\) such that \(X\cap X'\ne \emptyset \), then \((k,g)=(5,3)\) and \(G[X]\cong K_4\). As corollaries, several previous results are easily obtained.  相似文献   

5.
We prove that the edges of every even graph G=G 1+G 2 that is the join of two regular graphs G i =(V i ,E i ) can be coloured with Δ(G) colours, whenever Δ(G)=Δ(G 2)+|V 1|. The proof of this result yields a combinatorial algorithm to optimally colour the edges of this type of graphs.  相似文献   

6.
Every critical graph is connected on proper edge-colorings of simple graphs. In contrast, there not only exist connected critical graphs but exist disconnected critical graphs on \(g_c\)-colorings of simple graphs. In this article, disconnected \(g_c\)-critical graphs are studied firstly and their structure characteristics are depicted.  相似文献   

7.
A paired-dominating set is a dominating set whose induced subgraph contains at least one perfect matching. This could model the situation of guards or police where each has a partner or backup. We are interested in those where all “minimal” paired-dominating sets are the same cardinality. In this case, we consider “minimal” to be with respect to the pairings. That is, the removal of any two vertices paired under the matching results in a set that is not dominating. We give a structural characterization of all such graphs with girth at least eight.  相似文献   

8.
A k-colouring of a graph G=(V,E) is a mapping c:V→{1,2,…,k} such that c(u)≠c(v) whenever uv is an edge. The reconfiguration graph of the k-colourings of G contains as its vertex set the k-colourings of G, and two colourings are joined by an edge if they differ in colour on just one vertex of G. We introduce a class of k-colourable graphs, which we call k-colour-dense graphs. We show that for each k-colour-dense graph G, the reconfiguration graph of the ?-colourings of G is connected and has diameter O(|V|2), for all ?k+1. We show that this graph class contains the k-colourable chordal graphs and that it contains all chordal bipartite graphs when k=2. Moreover, we prove that for each k≥2 there is a k-colourable chordal graph G whose reconfiguration graph of the (k+1)-colourings has diameter Θ(|V|2).  相似文献   

9.
For graphs G and H, let \(G\rightarrow (H,H)\) signify that any red/blue edge coloring of G contains a monochromatic H as a subgraph. Denote \(\mathcal {H}(\Delta ,n)=\{H:|V(H)|=n,\Delta (H)\le \Delta \}\). For any \(\Delta \) and n, we say that G is partition universal for \(\mathcal {H}(\Delta ,n)\) if \(G\rightarrow (H,H)\) for every \(H\in \mathcal {H}(\Delta ,n)\). Let \(G_r(N,p)\) be the random spanning subgraph of the complete r-partite graph \(K_r(N)\) with N vertices in each part, in which each edge of \(K_r(N)\) appears with probability p independently and randomly. We prove that for fixed \(\Delta \ge 2\) there exist constants rB and C depending only on \(\Delta \) such that if \(N\ge Bn\) and \(p=C(\log N/N)^{1/\Delta }\), then asymptotically almost surely \(G_r(N,p)\) is partition universal for \(\mathcal {H}(\Delta ,n)\).  相似文献   

10.
A set D?V of a graph G=(V,E) is a dominating set of G if every vertex in V?D has at least one neighbor in D. A dominating set D of G is a paired-dominating set of G if the induced subgraph, G[D], has a perfect matching. Given a graph G=(V,E) and a positive integer k, the paired-domination problem is to decide whether G has a paired-dominating set of cardinality at most k. The paired-domination problem is known to be NP-complete for bipartite graphs. In this paper, we, first, strengthen this complexity result by showing that the paired-domination problem is NP-complete for perfect elimination bipartite graphs. We, then, propose a linear time algorithm to compute a minimum paired-dominating set of a chordal bipartite graph, a well studied subclass of bipartite graphs.  相似文献   

11.
The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is known for relatively few classes of graphs, compared to other topological invariants, e.g., genus and crossing number. For the complete bipartite graphs, Beineke et al. (Proc Camb Philos Soc 60:1–5, 1964) gave the answer for most graphs in this family in 1964. In this paper, we derive formulas and bounds for the thickness of some complete k-partite graphs. And some properties for the thickness for the join of two graphs are also obtained.  相似文献   

12.
An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Favaron and Kouider (J Gr Theory 77:58–67, 2014) showed that if a simple graph G has an even factor, then it has an even factor F with \(|E(F)| \ge \frac{7}{16} (|E(G)| + 1)\). This ratio was improved to \(\frac{4}{7}\) recently by  Chen and Fan (J Comb Theory Ser B 119:237–244, 2016), which is the best possible. In this paper, we take the set of vertices of degree 2 (say \(V_{2}(G)\)) into consideration and further strengthen this lower bound. Our main result is to show that for any simple graph G having an even factor, G has an even factor F with \(|E(F)| \ge \frac{4}{7} (|E(G)| + 1)+\frac{1}{7}|V_{2}(G)|\).  相似文献   

13.
In this paper, we consider a new visual cryptography scheme that allows for sharing of multiple secret images on graphs: we are given an arbitrary graph (V,E) where every node and every edge are assigned an arbitrary image. Images on the vertices are “public” and images on the edges are “secret”. The problem that we are considering is how to make a construction such that when the encoded images of two adjacent vertices are printed on transparencies and overlapped, the secret image corresponding to the edge is revealed. We define the most stringent security guarantees for this problem (perfect secrecy) and show a general construction for all graphs where the cost (in terms of pixel expansion and contrast of the images) is proportional to the chromatic number of the cube of the underlying graph. For the case of bounded degree graphs, this gives us constant-factor pixel expansion and contrast. This compares favorably to previous works, where pixel expansion and contrast are proportional to the number of images.  相似文献   

14.
Given a network G=(V,E), we say that a subset of vertices SV has radius r if it is spanned by a tree of depth at most r. We are interested in determining whether G has a cutset that can be written as the union of k sets of radius r. This generalizes the notion of k-vertex connectivity, since in the special case r=0, a set spanned by a tree of depth at most r is a single vertex.  相似文献   

15.
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset XV and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2 e(G)⌉≤t(G)≤⌈log 2 e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or for k≥6. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. J.S.-t.J. is supported in part by the National Science Council under grant NSC89-2218-E-260-013. G.J.C. is supported in part by the National Science Council under grant NSC93-2213-E002-28. Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan. National Center for Theoretical Sciences, Taipei Office.  相似文献   

16.
Overlap graphs occur in computational biology and computer science, and have applications in genome sequencing, string compression, and machine scheduling. Given two strings \(s_{i}\) and \(s_{j}\) , their overlap string is defined as the longest string \(v\) such that \(s_{i} = uv\) and \(s_{j} = vw\) , for some non empty strings \(u,w\) , and its length is called the overlap between these two strings. A weighted directed graph is an overlap graph if there exists a set of strings with one-to-one correspondence to the vertices of the graph, such that each arc weight in the graph equals the overlap between the corresponding strings. In this paper, we characterize the class of overlap graphs, and we present a polynomial time recognition algorithm as a direct consequence. Given a weighted directed graph \(G\) , the algorithm constructs a set of strings that has \(G\) as its overlap graph, or decides that this is not possible.  相似文献   

17.
On backbone coloring of graphs   总被引:1,自引:0,他引:1  
Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G,H) is a mapping f: V(G)→{1,2,…,k} such that |f(u)−f(v)|≥2 if uvE(H) and |f(u)−f(v)|≥1 if uvE(G)\E(H). The backbone chromatic number of (G,H) is the smallest integer k such that (G,H) has a backbone-k-coloring. In this paper, we characterize the backbone chromatic number of Halin graphs G=TC with respect to given spanning trees T. Also we study the backbone coloring for other special graphs such as complete graphs, wheels, graphs with small maximum average degree, graphs with maximum degree 3, etc.  相似文献   

18.
We investigate the problem of orienting the edges of an embedded graph in such a way that the resulting digraph fulfills given in-degree specifications both for the vertices and for the faces of the embedding. This primal-dual orientation problem was first proposed by Frank for the case of planar graphs, in conjunction with the question for a good characterization of the existence of such orientations. We answer this question by showing that a feasible orientation of a planar embedding, if it exists, can be constructed by combining certain parts of a primally feasible orientation and a dually feasible orientation. For the general case of arbitrary embeddings, we show that the number of feasible orientations is bounded by \(2^{2g}\), where \(g\) is the genus of the embedding. Our proof also yields a fixed-parameter algorithm for determining all feasible orientations parameterized by the genus. In contrast to these positive results, however, we also show that the problem becomes \(N\!P\)-complete even for a fixed genus if only upper and lower bounds on the in-degrees are specified instead of exact values.  相似文献   

19.
In this paper, we continue the study of paired-domination in graphs introduced by Haynes and Slater (Networks 32 (1998) 199–206). A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The paired-domination number of G, denoted by , is the minimum cardinality of a paired-dominating set of G. If G does not contain a graph F as an induced subgraph, then G is said to be F-free. Haynes and Slater (Networks 32 (1998) 199–206) showed that if G is a connected graph of order , then and this bound is sharp for graphs of arbitrarily large order. Every graph is -free for some integer a ≥ 0. We show that for every integer a ≥ 0, if G is a connected -free graph of order n ≥ 2, then with infinitely many extremal graphs.  相似文献   

20.
In this paper we study the acyclic 3-colorability of some subclasses of planar graphs. First, we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Then, we show that every planar graph has a subdivision with one vertex per edge that is acyclically 3-colorable and provide a linear-time coloring algorithm. Finally, we characterize the series-parallel graphs for which every 3-coloring is acyclic and provide a linear-time recognition algorithm for such graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号