首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Air quality control usually requires a monitoring system of multiple indicators measured at various points in space and time. Hence, the use of space–time multivariate techniques are of fundamental importance in this context, where decisions and actions regarding environmental protection should be supported by studies based on either inter-variables relations and spatial–temporal correlations. This paper describes how canonical correlation analysis can be combined with space–time geostatistical methods for analysing two spatial–temporal correlated aspects, such as air pollution concentrations and meteorological conditions. Hourly averages of three pollutants (nitric oxide, nitrogen dioxide and ozone) and three atmospheric indicators (temperature, humidity and wind speed) taken for two critical months (February and August) at several monitoring stations are considered and space–time variograms for the variables are estimated. Simultaneous relationships between such sample space–time variograms are determined through canonical correlation analysis. The most correlated canonical variates are used for describing synthetically the underlying space–time behaviour of the components of the two sets.  相似文献   

4.
ABSTRACT

In this work, we deal with a bivariate time series of wind speed and direction. Our observed data have peculiar features, such as informative missing values, non-reliable measures under a specific condition and interval-censored data, that we take into account in the model specification. We analyse the time series with a non-parametric Bayesian hidden Markov model, introducing a new emission distribution, suitable to model our data, based on the invariant wrapped Poisson, the Poisson and the hurdle density. The model is estimated on simulated datasets and on the real data example that motivated this work.  相似文献   

5.
Summary: This paper describes common features in data sets from motor vehicle insurance companies and proposes a general approach which exploits knowledge of such features in order to model high–dimensional data sets with a complex dependency structure. The results of the approach can be a basis to develop insurance tariffs. The approach is applied to a collection of data sets from several motor vehicle insurance companies. As an example, we use a nonparametric approach based on a combination of two methods from modern statistical machine learning, i.e. kernel logistic regression and -support vector regression.*This work was supported by the Deutsche Forschungsgemeinschaft (SFB 475, Reduction of complexity in multivariate data structures) and by the Forschungsband Do-MuS from the University of Dortmund. I am grateful to Mr. A. Wolfstein and Dr. W. Terbeck from the Verband öffentlicher Versicherer in Düsseldorf, Germany, for making available the data set and for many helpful discussions.  相似文献   

6.
7.
Abstract

In some clinical, environmental, or economical studies, researchers are interested in a semi-continuous outcome variable which takes the value zero with a discrete probability and has a continuous distribution for the non-zero values. Due to the measuring mechanism, it is not always possible to fully observe some outcomes, and only an upper bound is recorded. We call this left-censored data and observe only the maximum of the outcome and an independent censoring variable, together with an indicator. In this article, we introduce a mixture semi-parametric regression model. We consider a parametric model to investigate the influence of covariates on the discrete probability of the value zero. For the non-zero part of the outcome, a semi-parametric Cox’s regression model is used to study the conditional hazard function. The different parameters in this mixture model are estimated using a likelihood method. Hereby the infinite dimensional baseline hazard function is estimated by a step function. As results, we show the identifiability and the consistency of the estimators for the different parameters in the model. We study the finite sample behaviour of the estimators through a simulation study and illustrate this model on a practical data example.  相似文献   

8.
The tobit model allows a censored response variable to be described by covariates. Its applications cover different areas such as economics, engineering, environment and medicine. A strong assumption of the standard tobit model is that its errors follow a normal distribution. However, not all applications are well modeled by this distribution. Some efforts have relaxed the normality assumption by considering more flexible distributions. Nevertheless, the presence of asymmetry could not be well described by these flexible distributions. A real-world data application of measles vaccine in Haiti is explored, which confirms this asymmetry. We propose a tobit model with errors following a Birnbaum–Saunders (BS) distribution, which is asymmetrical and has shown to be a good alternative for describing medical data. Inference based on the maximum likelihood method and a type of residual are derived for the tobit–BS model. We perform global and local influence diagnostics to assess the sensitivity of the maximum likelihood estimators to atypical cases. A Monte Carlo simulation study is carried out to empirically evaluate the performance of these estimators. We conduct a data analysis for the mentioned application of measles vaccine based on the proposed model with the help of the R software. The results show the good performance of the tobit–BS model.  相似文献   

9.
Separable spatio-temporal covariance models, defined as the product of purely spatial and purely temporal covariance functions, are often used in practice, but frequently they only represent a convenient assumption. On the other hand, non-separable models are receiving a lot of attention, since they are more flexible to handle empirical covariances showed up in applications. Different forms of non-separability for space–time covariance functions have been recently defined in the literature. In this paper, the notion of positive and negative non-separability is further formalized in order to distinguish between pointwise and uniform non-separability. Various well-known non-separable space–time stationary covariance models are analyzed and classified by using the new definition of non-separability. In particular, wide classes of non-separable spatio-temporal covariance functions, able to capture positive and negative non-separability, are proposed and some examples of these classes are given. General results concerning the non-separability of spatial–temporal covariance functions obtained by a linear combination of spatial–temporal covariance functions and some stability properties are also presented. These results can be helpful to generate as well as to select appropriate covariance models for describing space–time data.  相似文献   

10.
Although a wide list of classes of space–time covariance functions is now available, selecting an appropriate class of models for a variable under study is still difficult and it represents a priority problem with respect to the choice of a particular model of a specified class. Then, knowing the characteristics of various classes of covariances, and their auxiliary functions, and matching those with the characteristics of the empirical space–time covariance surface might be helpful in the selection of a suitable class. In this paper some characteristics, such as behavior at the origin, asymptotic behavior, nonseparability and anisotropy aspects, are studied for some well known classes of covariance models of stationary space–time random fields. Moreover, some important issues related to modeling choices are described and a case study is presented.  相似文献   

11.
The purpose of this paper is to develop a new linear regression model for count data, namely generalized-Poisson Lindley (GPL) linear model. The GPL linear model is performed by applying generalized linear model to GPL distribution. The model parameters are estimated by the maximum likelihood estimation. We utilize the GPL linear model to fit two real data sets and compare it with the Poisson, negative binomial (NB) and Poisson-weighted exponential (P-WE) models for count data. It is found that the GPL linear model can fit over-dispersed count data, and it shows the highest log-likelihood, the smallest AIC and BIC values. As a consequence, the linear regression model from the GPL distribution is a valuable alternative model to the Poisson, NB, and P-WE models.  相似文献   

12.
We analyze left-truncated and right-censored (LTRC) data using an additive-multiplicative Cox–Aalen model proposed by Scheike and Zhang (2002), which extends the Cox regression model as well as the additive Aalen model. Based on the conditional likelihood function, we derive the weighted least-squared (WLS) estimators for the regression parameters and cumulative intensity functions of the model. The estimators are shown to be consistent and asymptotically normal. A simulation study is conducted to investigate the performance of the proposed estimators.  相似文献   

13.
This paper considers the analysis of multivariate survival data where the marginal distributions are specified by semiparametric transformation models, a general class including the Cox model and the proportional odds model as special cases. First, consideration is given to the situation where the joint distribution of all failure times within the same cluster is specified by the Clayton–Oakes model (Clayton, Biometrika 65:141–151, l978; Oakes, J R Stat Soc B 44:412–422, 1982). A two-stage estimation procedure is adopted by first estimating the marginal parameters under the independence working assumption, and then the association parameter is estimated from the maximization of the full likelihood function with the estimators of the marginal parameters plugged in. The asymptotic properties of all estimators in the semiparametric model are derived. For the second situation, the third and higher order dependency structures are left unspecified, and interest focuses on the pairwise correlation between any two failure times. Thus, the pairwise association estimate can be obtained in the second stage by maximizing the pairwise likelihood function. Large sample properties for the pairwise association are also derived. Simulation studies show that the proposed approach is appropriate for practical use. To illustrate, a subset of the data from the Diabetic Retinopathy Study is used.  相似文献   

14.
In this paper, we study space–time generalized additive models. We apply the penalyzed likelihood method to fit generalized additive models (GAMs) for nonseparable spatio-temporal correlated data in order to improve the estimation of the response and smooth terms of GAMs. The results show that our space–time generalized additive models estimated response and smooth terms reasonable well, and in addition, the mean squared error, mean absolute deviation and coverage intervals improved considerably compared to the classic GAM. An application on particulate matter concentration in the North-Italian region of Piemonte is also presented.  相似文献   

15.
In longitudinal studies, an individual may potentially undergo a series of repeated recurrence events. The gap times, which are referred to as the times between successive recurrent events, are typically the outcome variables of interest. Various regression models have been developed in order to evaluate covariate effects on gap times based on recurrence event data. The proportional hazards model, additive hazards model, and the accelerated failure time model are all notable examples. Quantile regression is a useful alternative to the aforementioned models for survival analysis since it can provide great flexibility to assess covariate effects on the entire distribution of the gap time. In order to analyze recurrence gap time data, we must overcome the problem of the last gap time subjected to induced dependent censoring, when numbers of recurrent events exceed one time. In this paper, we adopt the Buckley–James-type estimation method in order to construct a weighted estimation equation for regression coefficients under the quantile model, and develop an iterative procedure to obtain the estimates. We use extensive simulation studies to evaluate the finite-sample performance of the proposed estimator. Finally, analysis of bladder cancer data is presented as an illustration of our proposed methodology.  相似文献   

16.
A nested case–control (NCC) study is an efficient cohort-sampling design in which a subset of controls are sampled from the risk set at each event time. Since covariate measurements are taken only for the sampled subjects, time and efforts of conducting a full scale cohort study can be saved. In this paper, we consider fitting a semiparametric accelerated failure time model to failure time data from a NCC study. We propose to employ an efficient induced smoothing procedure for rank-based estimating method for regression parameters estimation. For variance estimation, we propose to use an efficient resampling method that utilizes the robust sandwich form. We extend our proposed methods to a generalized NCC study that allows a sampling of cases. Finite sample properties of the proposed estimators are investigated via an extensive stimulation study. An application to a tumor study illustrates the utility of the proposed method in routine data analysis.  相似文献   

17.
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.  相似文献   

18.
In this paper, a new survival cure rate model is introduced considering the Yule–Simon distribution [12 H.A. Simon, On a class of skew distribution functions, Biometrika 42 (1955), pp. 425440.[Crossref], [Web of Science ®] [Google Scholar]] to model the number of concurrent causes. We study some properties of this distribution and the model arising when the distribution of the competing causes is the Weibull model. We call this distribution the Weibull–Yule–Simon distribution. Maximum likelihood estimation is conducted for model parameters. A small scale simulation study is conducted indicating satisfactory parameter recovery by the estimation approach. Results are applied to a real data set (melanoma) illustrating the fact that the model proposed can outperform traditional alternative models in terms of model fitting.  相似文献   

19.
AStA Advances in Statistical Analysis - We introduce and study the Box–Cox symmetric class of distributions, which is useful for modeling positively skewed, possibly heavy-tailed, data. The...  相似文献   

20.
Little work has been published on the analysis of censored data for the Birnbaum–Saunders distribution (BISA). In this article, we implement the EM algorithm to fit a regression model with censored data when the failure times follow the BISA. Three approaches to implement the E-Step of the EM algorithm are considered. In two of these implementations, the M-Step is attained by an iterative least-squares procedure. The algorithm is exemplified with a single explanatory variable in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号