首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of modelling time series driven by non-Gaussian innovation has been considered recently by Li and McLeod (1988). In this paper we have discussed the problem of identification of ARMA models with non-Gaussian innovations. Simulation experiments are used to study the applicability of theoretical results.  相似文献   

2.
Summary. The development of time series models for traffic volume data constitutes an important step in constructing automated tools for the management of computing infrastructure resources. We analyse two traffic volume time series: one is the volume of hard disc activity, aggregated into half-hour periods, measured on a workstation, and the other is the volume of Internet requests made to a workstation. Both of these time series exhibit features that are typical of network traffic data, namely strong seasonal components and highly non-Gaussian distributions. For these time series, a particular class of non-linear state space models is proposed, and practical techniques for model fitting and forecasting are demonstrated.  相似文献   

3.
This paper considers the likelihood ratio (LR) tests of stationarity, common trends and cointegration for multivariate time series. As the distribution of these tests is not known, a bootstrap version is proposed via a state- space representation. The bootstrap samples are obtained from the Kalman filter innovations under the null hypothesis. Monte Carlo simulations for the Gaussian univariate random walk plus noise model show that the bootstrap LR test achieves higher power for medium-sized deviations from the null hypothesis than a locally optimal and one-sided Lagrange Multiplier (LM) test that has a known asymptotic distribution. The power gains of the bootstrap LR test are significantly larger for testing the hypothesis of common trends and cointegration in multivariate time series, as the alternative asymptotic procedure – obtained as an extension of the LM test of stationarity – does not possess properties of optimality. Finally, it is shown that the (pseudo-)LR tests maintain good size and power properties also for the non-Gaussian series. An empirical illustration is provided.  相似文献   

4.
The main topic of the paper is on-line filtering for non-Gaussian dynamic (state space) models by approximate computation of the first two posterior moments using efficient numerical integration. Based on approximating the prior of the state vector by a normal density, we prove that the posterior moments of the state vector are related to the posterior moments of the linear predictor in a simple way. For the linear predictor Gauss-Hermite integration is carried out with automatic reparametrization based on an approximate posterior mode filter. We illustrate how further topics in applied state space modelling, such as estimating hyperparameters, computing model likelihoods and predictive residuals, are managed by integration-based Kalman-filtering. The methodology derived in the paper is applied to on-line monitoring of ecological time series and filtering for small count data.  相似文献   

5.
Various nonparametric approaches for Bayesian spectral density estimation of stationary time series have been suggested in the literature, mostly based on the Whittle likelihood approximation. A generalization of this approximation involving a nonparametric correction of a parametric likelihood has been proposed in the literature with a proof of posterior consistency for spectral density estimation in combination with the Bernstein–Dirichlet process prior for Gaussian time series. In this article, we will extend the posterior consistency result to non-Gaussian time series by employing a general consistency theorem for dependent data and misspecified models. As a special case, posterior consistency for the spectral density under the Whittle likelihood is also extended to non-Gaussian time series. Small sample properties of this approach are illustrated with several examples of non-Gaussian time series.  相似文献   

6.
Classical methods based on Gaussian likelihood or least-squares cannot identify non-invertible moving average processes, while recent non-Gaussian results are based on full likelihood consideration. Since the error distribution is rarely known a quasi-likelihood approach is desirable, but its consistency properties are yet unknown. In this paper we study the quasi-likelihood associated with the Laplacian model, a convenient non-Gaussian model that yields a modified L 1 procedure. We show that consistency holds for all standard heavy tailed errors, but not for light tailed errors, showing that a quasi-likelihood procedure cannot be applied blindly to estimate non-invertible models. This is an interesting contrast to the standard results of the quasi-likelihood in regression models, where consistency usually holds much more generally. Similar results hold for estimation of non-causal non-invertible ARMA processes. Various simulation studies are presented to validate the theory and to show the effect of the error distribution, and an analysis of the US unemployment series is given as an illustration.  相似文献   

7.
We define a nonlinear autoregressive time series model based on the generalized hyperbolic distribution in an attempt to model time series with non-Gaussian features such as skewness and heavy tails. We show that the resulting process has a simple condition for stationarity and it is also ergodic. An empirical example with a forecasting experiment is presented to illustrate the features of the proposed model.  相似文献   

8.
Volatility estimation in financial markets has always been a challenge especially in time of crisis. Once asset prices and investment decisions are highly sensitive to such variable, many different models have been proposed in literature. This article estimates the volatility from a new family of stochastic volatility models called non-Gaussian State Space Models, a subclass of state space models where it is possible to compute exact likelihood. Volatilities of important Asian and Oceanian stock market indexes have been estimated and compared to APARCH model estimates. Results showed that non-Gaussian State Space Models outperformed significantly in both in-sample and forecasting cases.  相似文献   

9.
The small sample performance of Zeger and Liang's extended generalized linear models for the analysis of longitudinal data (Biometrics, 42,121-130,1986) is investigated for correlated gamma data. Results show that the confidence intervals do not provide desirable coverage of the true parameter due to considerably biased point estimates. Improved estimates are proposed using the jackknife procedure. Simulations performed to evaluate the proposed estimates indicate superior properties to the previous estimates.  相似文献   

10.
In the present paper, minimum Hellinger distance estimates for parameters of a bilinear time series model are presented. The probabilistic properties such as stationarity, existence of moments of the stationary distribution and strong mixing property of the model are well known (see for instance [J. Liu, A note on causality and invertibility of a general bilinear time series model, Adv. Appl. Probab. 22 (1990) 247–250; J. Liu, P.J. Brockwell, On the general bilinear time series model, J. Appl. Probab. 25 (1988) 553–564; D.T. Pham, The mixing property of bilinear and generalised random coefficients autoregressive models, Stoch. Process Appl. 23 (1986) 291–300]). We establish, under some mild conditions, the consistency and the asymptotic normality of the minimum Hellinger distance estimates of the parameters of the model.  相似文献   

11.
We propose a class of state-space models for multivariate longitudinal data where the components of the response vector may have different distributions. The approach is based on the class of Tweedie exponential dispersion models, which accommodates a wide variety of discrete, continuous and mixed data. The latent process is assumed to be a Markov process, and the observations are conditionally independent given the latent process, over time as well as over the components of the response vector. This provides a fully parametric alternative to the quasilikelihood approach of Liang and Zeger. We estimate the regression parameters for time-varying covariates entering either via the observation model or via the latent process, based on an estimating equation derived from the Kalman smoother. We also consider analysis of residuals from both the observation model and the latent process.  相似文献   

12.
The modelling of discrete such as binary time series, unlike the continuous time series, is not easy. This is due to the fact that there is no unique way to model the correlation structure of the repeated binary data. Some models may also provide a complicated correlation structure with narrow ranges for the correlations. In this paper, we consider a nonlinear dynamic binary time series model that provides a correlation structure which is easy to interpret and the correlations under this model satisfy the full?1 to 1 range. For the estimation of the parameters of this nonlinear model, we use a conditional generalized quasilikelihood (CGQL) approach which provides the same estimates as those of the well-known maximum likelihood approach. Furthermore, we consider a competitive linear dynamic binary time series model and examine the performance of the CGQL approach through a simulation study in estimating the parameters of this linear model. The model mis-specification effects on estimation as well as forecasting are also examined through simulations.  相似文献   

13.
Non-Gaussian Conditional Linear AR(1) Models   总被引:2,自引:0,他引:2  
This paper gives a general formulation of a non-Gaussian conditional linear AR(1) model subsuming most of the non-Gaussian AR(1) models that have appeared in the literature. It derives some general results giving properties for the stationary process mean, variance and correlation structure, and conditions for stationarity. These results highlight similarities with and differences from the Gaussian AR(1) model, and unify many separate results appearing in the literature. Examples illustrate the wide range of properties that can appear under the conditional linear autoregressive assumption. These results are used in analysing three real datasets, illustrating general methods of estimation, model diagnostics and model selection. In particular, the theoretical results can be used to develop diagnostics for deciding if a time series can be modelled by some linear autoregressive model, and for selecting among several candidate models.  相似文献   

14.
We propose a new generalized autoregressive conditional heteroscedastic (GARCH) model with tree-structured multiple thresholds for the estimation of volatility in financial time series. The approach relies on the idea of a binary tree where every terminal node parameterizes a (local) GARCH model for a partition cell of the predictor space. The fitting of such trees is constructed within the likelihood framework for non-Gaussian observations: it is very different from the well-known regression tree procedure which is based on residual sums of squares. Our strategy includes the classical GARCH model as a special case and allows us to increase model complexity in a systematic and flexible way. We derive a consistency result and conclude from simulation and real data analysis that the new method has better predictive potential than other approaches.  相似文献   

15.
This paper documents situations where the variance inflation model for outliers has undesirable properties. The model is commonly used to accommodate outliers in a Bayesian analysis of regression and time series models. The alternative approach provided here does not suffer from these undesirable properties but gives inferences similar to those of the variance inflation model when this is appropriate. It can be used with regression, time series, and regression with correlated errors in a unified way, and adheres to the scientific principle that inference should be based on the data after obvious outliers have been discarded. Only one parameter is required for outliers; it is interpretable as the a priori willingness to remove observations from the analysis.  相似文献   

16.
This paper proposes an identification method of ARIMA models for seasonal time series using an intermediary model and a filtering method. This method is found to be useful when conventional methods, such as using sample ACF and PACF, fail to reveal a clear-cut model. This filtering identification method is also found to be particularly effective when a seasonal time series is subjected to calendar variations, moving-holiday effects, and interventions.  相似文献   

17.
The shared-parameter model and its so-called hierarchical or random-effects extension are widely used joint modeling approaches for a combination of longitudinal continuous, binary, count, missing, and survival outcomes that naturally occurs in many clinical and other studies. A random effect is introduced and shared or allowed to differ between two or more repeated measures or longitudinal outcomes, thereby acting as a vehicle to capture association between the outcomes in these joint models. It is generally known that parameter estimates in a linear mixed model (LMM) for continuous repeated measures or longitudinal outcomes allow for a marginal interpretation, even though a hierarchical formulation is employed. This is not the case for the generalized linear mixed model (GLMM), that is, for non-Gaussian outcomes. The aforementioned joint models formulated for continuous and binary or two longitudinal binomial outcomes, using the LMM and GLMM, will naturally have marginal interpretation for parameters associated with the continuous outcome but a subject-specific interpretation for the fixed effects parameters relating covariates to binary outcomes. To derive marginally meaningful parameters for the binary models in a joint model, we adopt the marginal multilevel model (MMM) due to Heagerty [13] and Heagerty and Zeger [14] and formulate a joint MMM for two longitudinal responses. This enables to (1) capture association between the two responses and (2) obtain parameter estimates that have a population-averaged interpretation for both outcomes. The model is applied to two sets of data. The results are compared with those obtained from the existing approaches such as generalized estimating equations, GLMM, and the model of Heagerty [13]. Estimates were found to be very close to those from single analysis per outcome but the joint model yields higher precision and allows for quantifying the association between outcomes. Parameters were estimated using maximum likelihood. The model is easy to fit using available tools such as the SAS NLMIXED procedure.  相似文献   

18.
Quality control relies heavily on the use of formal assessment metrics. In this paper, for the context of veterinary epidemiology, we review the main proposals, precision, repeatability, reproducibility, and intermediate precision, in agreement with ISO (international Organization for Standardization) practice, generalize these by placing them within the linear mixed model framework, which we then extend to the generalized linear mixed model setting, so that both Gaussian as well as non-Gaussian data can be employed. Similarities and differences are discussed between the classical ANOVA (analysis of variance) approach and the proposed mixed model settings, on the one hand, and between the Gaussian and non-Gaussian cases, on the other hand. The new proposals are applied to five studies in three diseases: Aujeszky's disease, enzootic bovine leucosis (EBL) and bovine brucellosis. The mixed-models proposals are also discussed in the light of their computational requirements.  相似文献   

19.
Nonlinear and non-Gaussian state–space models (SSMs) are fitted to different types of time series. The applications include homogeneous and seasonal time series, in particular earthquake counts, polio counts, rainfall occurrence data, glacial varve data and daily returns on a share. The considered SSMs comprise Poisson, Bernoulli, gamma and Student-t distributions at the observation level. Parameter estimations for the SSMs are carried out using a likelihood approximation that is obtained after discretization of the state space. The approximation can be made arbitrarily accurate, and the approximated likelihood is precisely that of a finite-state hidden Markov model (HMM). The proposed method enables us to apply standard HMM techniques. It is easy to implement and can be extended to all kinds of SSMs in a straightforward manner.  相似文献   

20.
A common practice in time series analysis is to fit a centered model to the mean-corrected data set. For stationary autoregressive moving-average (ARMA) processes, as far as the parameter estimation is concerned, fitting an ARMA model without intercepts to the mean-corrected series is asymptotically equivalent to fitting an ARMA model with intercepts to the observed series. We show that, related to the parameter least squares estimation of periodic ARMA models, the second approach can be arbitrarily more efficient than the mean-corrected counterpart. This property is illustrated by means of a periodic first-order autoregressive model. The asymptotic variance of the estimators for both approaches is derived. Moreover, empirical experiments based on simulations investigate the finite sample properties of the estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号