首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We consider estimation in a high-dimensional linear model with strongly correlated variables. We propose to cluster the variables first and do subsequent sparse estimation such as the Lasso for cluster-representatives or the group Lasso based on the structure from the clusters. Regarding the first step, we present a novel and bottom-up agglomerative clustering algorithm based on canonical correlations, and we show that it finds an optimal solution and is statistically consistent. We also present some theoretical arguments that canonical correlation based clustering leads to a better-posed compatibility constant for the design matrix which ensures identifiability and an oracle inequality for the group Lasso. Furthermore, we discuss circumstances where cluster-representatives and using the Lasso as subsequent estimator leads to improved results for prediction and detection of variables. We complement the theoretical analysis with various empirical results.  相似文献   

2.
Penalization has been extensively adopted for variable selection in regression. In some applications, covariates have natural grouping structures, where those in the same group have correlated measurements or related functions. Under such settings, variable selection should be conducted at both the group-level and within-group-level, that is, a bi-level selection. In this study, we propose the adaptive sparse group Lasso (adSGL) method, which combines the adaptive Lasso and adaptive group Lasso (GL) to achieve bi-level selection. It can be viewed as an improved version of sparse group Lasso (SGL) and uses data-dependent weights to improve selection performance. For computation, a block coordinate descent algorithm is adopted. Simulation shows that adSGL has satisfactory performance in identifying both individual variables and groups and lower false discovery rate and mean square error than SGL and GL. We apply the proposed method to the analysis of a household healthcare expenditure data set.  相似文献   

3.
When employing model selection methods with oracle properties such as the smoothly clipped absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression function is sparse and the signals large, such cross-validation typically works well. However, in regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse, do not have large signals. We demonstrate empirically that in such problems, the number of selected variables using SCAD and the Adaptive Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly questions the suitability of performing only a single run of m-fold cross-validation with any oracle method, and not just the SCAD and Adaptive Lasso.  相似文献   

4.
闫懋博  田茂再 《统计研究》2021,38(1):147-160
Lasso等惩罚变量选择方法选入模型的变量数受到样本量限制。文献中已有研究变量系数显著性的方法舍弃了未选入模型的变量含有的信息。本文在变量数大于样本量即p>n的高维情况下,使用随机化bootstrap方法获得变量权重,在计算适应性Lasso时构建选择事件的条件分布并剔除系数不显著的变量,以得到最终估计结果。本文的创新点在于提出的方法突破了适应性Lasso可选变量数的限制,当观测数据含有大量干扰变量时能够有效地识别出真实变量与干扰变量。与现有的惩罚变量选择方法相比,多种情境下的模拟研究展示了所提方法在上述两个问题中的优越性。实证研究中对NCI-60癌症细胞系数据进行了分析,结果较以往文献有明显改善。  相似文献   

5.
With the quantile regression methods successfully applied in various applications, we often need to tackle with the big dataset with thousands of variables and millions of observations. In this article, we focus on the variable selection aspect of penalized quantile regression, and propose a new method Sampling Lasso Quantile Regression (SLQR), which allows selecting a small amount but informative data for fitting quantile regression models. Different from the ordinary regularization methods, this SLQR method performs a sampling technique to reduce the number of observations before applying Lasso. Through numerical simulation studies and real application in Greenhouse Gas Observing Network, we illustrate the efficacy of the SLQR method. The numerical results show that the SLQR method is able to achieve a high-precision quantile regression on large-scale data for both prediction and interpretation.  相似文献   

6.
Abstract.  This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared with the proportional model is, however, that there is no simple likelihood to work with. We here study a least squares criterion with desirable properties and show how this criterion can be interpreted as a prediction error. Given this criterion, we define ridge and Lasso estimators as well as an adaptive Lasso and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number of observations. We do this by studying the properties of the so-called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare the Dantzig and adaptive Lasso for a moderate to small number of covariates. The methods are applied to a breast cancer data set with gene expression recordings and to the primary biliary cirrhosis clinical data.  相似文献   

7.
The Lasso has sparked interest in the use of penalization of the log‐likelihood for variable selection, as well as for shrinkage. We are particularly interested in the more‐variables‐than‐observations case of characteristic importance for modern data. The Bayesian interpretation of the Lasso as the maximum a posteriori estimate of the regression coefficients, which have been given independent, double exponential prior distributions, is adopted. Generalizing this prior provides a family of hyper‐Lasso penalty functions, which includes the quasi‐Cauchy distribution of Johnstone and Silverman as a special case. The properties of this approach, including the oracle property, are explored, and an EM algorithm for inference in regression problems is described. The posterior is multi‐modal, and we suggest a strategy of using a set of perfectly fitting random starting values to explore modes in different regions of the parameter space. Simulations show that our procedure provides significant improvements on a range of established procedures, and we provide an example from chemometrics.  相似文献   

8.
The adaptive least absolute shrinkage and selection operator (Lasso) and least absolute deviation (LAD)-Lasso are two attractive shrinkage methods for simultaneous variable selection and regression parameter estimation. While the adaptive Lasso is efficient for small magnitude errors, LAD-Lasso is robust against heavy-tailed errors and severe outliers. In this article, we consider a data-driven convex combination of these two modern procedures to produce a robust adaptive Lasso, which not only enjoys the oracle properties, but synthesizes the advantages of the adaptive Lasso and LAD-Lasso. It fully adapts to different error structures including the infinite variance case and automatically chooses the optimal weight to achieve both robustness and high efficiency. Extensive simulation studies demonstrate a good finite sample performance of the robust adaptive Lasso. Two data sets are analyzed to illustrate the practical use of the procedure.  相似文献   

9.
多图模型表示来自于不同类的同一组随机变量间的相关关系,结点表示随机变量,边表示变量之间的直接联系,各类的图模型反映了各自相关结构特征和类间共同的信息。用多图模型联合估计方法,将来自不同个体的数据按其特征分类,假设每类中各变量间的相依结构服从同一个高斯图模型,应用组Lasso方法和图Lasso方法联合估计每类的图模型结构。数值模拟验证了多图模型联合估计方法的有效性。用多图模型和联合估计方法对中国15个省份13个宏观经济指标进行相依结构分析,结果表明,不同经济发展水平省份的宏观经济变量间存在共同的相关联系,反映了中国现阶段经济发展的特征;每一类的相关结构反映了各类省份经济发展独有的特征。  相似文献   

10.
Quantile regression has gained increasing popularity as it provides richer information than the regular mean regression, and variable selection plays an important role in the quantile regression model building process, as it improves the prediction accuracy by choosing an appropriate subset of regression predictors. Unlike the traditional quantile regression, we consider the quantile as an unknown parameter and estimate it jointly with other regression coefficients. In particular, we adopt the Bayesian adaptive Lasso for the maximum entropy quantile regression. A flat prior is chosen for the quantile parameter due to the lack of information on it. The proposed method not only addresses the problem about which quantile would be the most probable one among all the candidates, but also reflects the inner relationship of the data through the estimated quantile. We develop an efficient Gibbs sampler algorithm and show that the performance of our proposed method is superior than the Bayesian adaptive Lasso and Bayesian Lasso through simulation studies and a real data analysis.  相似文献   

11.
This article compares the mean-squared error (or ?2 risk) of ordinary least squares (OLS), James–Stein, and least absolute shrinkage and selection operator (Lasso) shrinkage estimators in simple linear regression where the number of regressors is smaller than the sample size. We compare and contrast the known risk bounds for these estimators, which shows that neither James–Stein nor Lasso uniformly dominates the other. We investigate the finite sample risk using a simple simulation experiment. We find that the risk of Lasso estimation is particularly sensitive to coefficient parameterization, and for a significant portion of the parameter space Lasso has higher mean-squared error than OLS. This investigation suggests that there are potential pitfalls arising with Lasso estimation, and simulation studies need to be more attentive to careful exploration of the parameter space.  相似文献   

12.
通常所说的Granger因果关系检验,实际上是对线性因果关系的检验,无法检验非线性因果关系。Peguin和Terasvirta(1999)进行了基于泰勒展式的一般性扩展,应用于非线性因果关系检验,并采用提取主成分的方法解决其中的多重共线性问题。但是,提取主成分对解决多重共线性的效果并不太好。Lasso回归是目前处理多重共线性的主要方法之一,相对于其他方法,更容易产生稀疏解,在参数估计的同时实现变量选择,因而可以用来解决检验中的多重共线性问题,以提高检验的效率。对检验程序的模拟结果表明,基于Lasso回归的检验取得较好的效果。  相似文献   

13.
Abstract

Variable selection is a fundamental challenge in statistical learning if one works with data sets containing huge amount of predictors. In this artical we consider procedures popular in model selection: Lasso and adaptive Lasso. Our goal is to investigate properties of estimators based on minimization of Lasso-type penalized empirical risk with a convex loss function, in particular nondifferentiable. We obtain theorems concerning rate of convergence in estimation, consistency in model selection and oracle properties for Lasso estimators if the number of predictors is fixed, i.e. it does not depend on the sample size. Moreover, we study properties of Lasso and adaptive Lasso estimators on simulated and real data sets.  相似文献   

14.
In this article, we study a nonparametric approach regarding a general nonlinear reduced form equation to achieve a better approximation of the optimal instrument. Accordingly, we propose the nonparametric additive instrumental variable estimator (NAIVE) with the adaptive group Lasso. We theoretically demonstrate that the proposed estimator is root-n consistent and asymptotically normal. The adaptive group Lasso helps us select the valid instruments while the dimensionality of potential instrumental variables is allowed to be greater than the sample size. In practice, the degree and knots of B-spline series are selected by minimizing the BIC or EBIC criteria for each nonparametric additive component in the reduced form equation. In Monte Carlo simulations, we show that the NAIVE has the same performance as the linear instrumental variable (IV) estimator for the truly linear reduced form equation. On the other hand, the NAIVE performs much better in terms of bias and mean squared errors compared to other alternative estimators under the high-dimensional nonlinear reduced form equation. We further illustrate our method in an empirical study of international trade and growth. Our findings provide a stronger evidence that international trade has a significant positive effect on economic growth.  相似文献   

15.
In high-dimensional setting, componentwise L2boosting has been used to construct sparse model that performs well, but it tends to select many ineffective variables. Several sparse boosting methods, such as, SparseL2Boosting and Twin Boosting, have been proposed to improve the variable selection of L2boosting algorithm. In this article, we propose a new general sparse boosting method (GSBoosting). The relations are established between GSBoosting and other well known regularized variable selection methods in the orthogonal linear model, such as adaptive Lasso, hard thresholds, etc. Simulation results show that GSBoosting has good performance in both prediction and variable selection.  相似文献   

16.
Abstract

Handling data with the nonignorably missing mechanism is still a challenging problem in statistics. In this paper, we develop a fully Bayesian adaptive Lasso approach for quantile regression models with nonignorably missing response data, where the nonignorable missingness mechanism is specified by a logistic regression model. The proposed method extends the Bayesian Lasso by allowing different penalization parameters for different regression coefficients. Furthermore, a hybrid algorithm that combined the Gibbs sampler and Metropolis-Hastings algorithm is implemented to simulate the parameters from posterior distributions, mainly including regression coefficients, shrinkage coefficients, parameters in the non-ignorable missing models. Finally, some simulation studies and a real example are used to illustrate the proposed methodology.  相似文献   

17.
Lasso has been widely used for variable selection because of its sparsity, and a number of its extensions have been developed. In this article, we propose a robust variant of Lasso for the time-course multivariate response, and develop an algorithm which transforms the optimization into a sequence of ridge regressions. The proposed method enables us to effectively handle multivariate responses and employs a basis representation of the regression parameters to reduce the dimensionality. We assess the proposed method through simulation and apply it to the microarray data.  相似文献   

18.
The aim of this study is to explore if the context matters in explaining socioeconomic inequality in the self-rated health of Italian elderly people. Our hypothesis is that health status perception is associated with existing huge imbalances among Italian areas. A multilevel approach is applied to account for the natural hierarchical structure, as individuals nested in geographical regions. Multilevel logistic regression models are performed including both individual and contextual variables, using data from 2005 Italian Health survey. We prove that individual factors (compositional effect), even representing the most important correlates of health, do not completely explain intra-regional heterogeneity, confirming the existence of an autonomous contextual effect. These territorial differences are present among both Regions and large areas, two geographical aggregations relevant in the domain of health. Moreover, for some Regions, the account for contextual factors explains variations in perceived health, leading to an overthrow of the initial situation: these Regions perform better than expected in the field of health. For other Regions, the contextual elements introduced do not catch the milieu heterogeneity. In this regard, we expect, and solicit, a major effort toward data availability, qualitatively and quantitatively, that might help in explaining residual territorial heterogeneity in health perception, a fundamental starting point for targeting specific policy interventions.  相似文献   

19.
Realized volatility computed from high-frequency data is an important measure for many applications in finance, and its dynamics have been widely investigated. Recent notable advances that perform well include the heterogeneous autoregressive (HAR) model which can approximate long memory, is very parsimonious, is easy to estimate, and features good out-of-sample performance. We prove that the least absolute shrinkage and selection operator (Lasso) recovers the lags structure of the HAR model asymptotically if it is the true model, and we present Monte Carlo evidence in finite samples. The HAR model's lags structure is not fully in agreement with the one found using the Lasso on real data. Moreover, we provide empirical evidence that there are two clear breaks in structure for most of the assets we consider. These results bring into question the appropriateness of the HAR model for realized volatility. Finally, in an out-of-sample analysis, we show equal performance of the HAR model and the Lasso approach.  相似文献   

20.
A number of nonstationary models have been developed to estimate extreme events as function of covariates. A quantile regression (QR) model is a statistical approach intended to estimate and conduct inference about the conditional quantile functions. In this article, we focus on the simultaneous variable selection and parameter estimation through penalized quantile regression. We conducted a comparison of regularized Quantile Regression model with B-Splines in Bayesian framework. Regularization is based on penalty and aims to favor parsimonious model, especially in the case of large dimension space. The prior distributions related to the penalties are detailed. Five penalties (Lasso, Ridge, SCAD0, SCAD1 and SCAD2) are considered with their equivalent expressions in Bayesian framework. The regularized quantile estimates are then compared to the maximum likelihood estimates with respect to the sample size. A Markov Chain Monte Carlo (MCMC) algorithms are developed for each hierarchical model to simulate the conditional posterior distribution of the quantiles. Results indicate that the SCAD0 and Lasso have the best performance for quantile estimation according to Relative Mean Biais (RMB) and the Relative Mean-Error (RME) criteria, especially in the case of heavy distributed errors. A case study of the annual maximum precipitation at Charlo, Eastern Canada, with the Pacific North Atlantic climate index as covariate is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号