首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In many studies a large number of variables is measured and the identification of relevant variables influencing an outcome is an important task. For variable selection several procedures are available. However, focusing on one model only neglects that there usually exist other equally appropriate models. Bayesian or frequentist model averaging approaches have been proposed to improve the development of a predictor. With a larger number of variables (say more than ten variables) the resulting class of models can be very large. For Bayesian model averaging Occam’s window is a popular approach to reduce the model space. As this approach may not eliminate any variables, a variable screening step was proposed for a frequentist model averaging procedure. Based on the results of selected models in bootstrap samples, variables are eliminated before deriving a model averaging predictor. As a simple alternative screening procedure backward elimination can be used. Through two examples and by means of simulation we investigate some properties of the screening step. In the simulation study we consider situations with fifteen and 25 variables, respectively, of which seven have an influence on the outcome. With the screening step most of the uninfluential variables will be eliminated, but also some variables with a weak effect. Variable screening leads to more applicable models without eliminating models, which are more strongly supported by the data. Furthermore, we give recommendations for important parameters of the screening step.  相似文献   

2.
This paper compares four estimators of the mean of the selected population from two normal populations with unknown means and common but unknown variance. The selection procedure is that the population yielding the largest sample mean is selected. The four estimators considered are invariant under both location and scale transformations. The bias and mean square errors of the four estimators are computed and compared. The conclusions are close to those reported by Dahiya ‘1974’, even for small sample sizes  相似文献   

3.
The autoregressive (AR) model is a popular method for fitting and prediction in analyzing time-dependent data, where selecting an accurate model among considered orders is a crucial issue. Two commonly used selection criteria are the Akaike information criterion and the Bayesian information criterion. However, the two criteria are known to suffer potential problems regarding overfit and underfit, respectively. Therefore, using them would perform well in some situations, but poorly in others. In this paper, we propose a new criterion in terms of the prediction perspective based on the concept of generalized degrees of freedom for AR model selection. We derive an approximately unbiased estimator of mean-squared prediction errors based on a data perturbation technique for selecting the order parameter, where the estimation uncertainty involved in a modeling procedure is considered. Some numerical experiments are performed to illustrate the superiority of the proposed method over some commonly used order selection criteria. Finally, the methodology is applied to a real data example to predict the weekly rate of return on the stock price of Taiwan Semiconductor Manufacturing Company and the results indicate that the proposed method is satisfactory.  相似文献   

4.
ABSRTACT

Since errors in factor levels affect the traditional statistical properties of response surface designs, an important question to consider is robustness of design to errors. However, when the actual design could be observed in the experimental settings, its optimality and prediction are of interest. Various numerical and graphical methods are useful tools for understanding the behavior of the designs. The D- and G-efficiencies and the fraction of design space plot are adapted to assess second-order response surface designs where the predictor variables are disturbed by a random error. Our study shows that the D-efficiencies of the competing designs are considerably low for big variance of the error, while the G-efficiencies are quite good. Fraction of design space plots display the distribution of the scaled prediction variance through the design space with and without errors in factor levels. The robustness of experimental designs against factor errors is explored through comparative study. The construction and use of the D- and G-efficiencies and the fraction of design space plots are demonstrated with several examples of different designs with errors.  相似文献   

5.
The article considers a Gaussian model with the mean and the variance modeled flexibly as functions of the independent variables. The estimation is carried out using a Bayesian approach that allows the identification of significant variables in the variance function, as well as averaging over all possible models in both the mean and the variance functions. The computation is carried out by a simulation method that is carefully constructed to ensure that it converges quickly and produces iterates from the posterior distribution that have low correlation. Real and simulated examples demonstrate that the proposed method works well. The method in this paper is important because (a) it produces more realistic prediction intervals than nonparametric regression estimators that assume a constant variance; (b) variable selection identifies the variables in the variance function that are important; (c) variable selection and model averaging produce more efficient prediction intervals than those obtained by regular nonparametric regression.  相似文献   

6.
The goal of this paper is to compare several widely used Bayesian model selection methods in practical model selection problems, highlight their differences and give recommendations about the preferred approaches. We focus on the variable subset selection for regression and classification and perform several numerical experiments using both simulated and real world data. The results show that the optimization of a utility estimate such as the cross-validation (CV) score is liable to finding overfitted models due to relatively high variance in the utility estimates when the data is scarce. This can also lead to substantial selection induced bias and optimism in the performance evaluation for the selected model. From a predictive viewpoint, best results are obtained by accounting for model uncertainty by forming the full encompassing model, such as the Bayesian model averaging solution over the candidate models. If the encompassing model is too complex, it can be robustly simplified by the projection method, in which the information of the full model is projected onto the submodels. This approach is substantially less prone to overfitting than selection based on CV-score. Overall, the projection method appears to outperform also the maximum a posteriori model and the selection of the most probable variables. The study also demonstrates that the model selection can greatly benefit from using cross-validation outside the searching process both for guiding the model size selection and assessing the predictive performance of the finally selected model.  相似文献   

7.
Summary. We propose the expected integrated mean-squared error (EIMSE) experimental design criterion and show how we used it to design experiments to meet the needs of researchers in die casting engineering. This criterion expresses in a direct way the researchers' goal to minimize the expected meta-model prediction errors, taking into account the effects of both random experimental errors and errors deriving from our uncertainty about the true model form. Because we needed to make assumptions about the prior distribution of model coefficients to estimate the EIMSE, we performed a sensitivity analysis to verify that the relative prediction performance of the design generated was largely insensitive to our assumptions. Also, we discuss briefly the general advantages of EIMSE optimal designs, including lower expected bias errors compared with popular response surface designs and substantially lower variance errors than certain Box–Draper all-bias designs.  相似文献   

8.
Although Cox proportional hazards regression is the default analysis for time to event data, there is typically uncertainty about whether the effects of a predictor are more appropriately characterized by a multiplicative or additive model. To accommodate this uncertainty, we place a model selection prior on the coefficients in an additive-multiplicative hazards model. This prior assigns positive probability, not only to the model that has both additive and multiplicative effects for each predictor, but also to sub-models corresponding to no association, to only additive effects, and to only proportional effects. The additive component of the model is constrained to ensure non-negative hazards, a condition often violated by current methods. After augmenting the data with Poisson latent variables, the prior is conditionally conjugate, and posterior computation can proceed via an efficient Gibbs sampling algorithm. Simulation study results are presented, and the methodology is illustrated using data from the Framingham heart study.  相似文献   

9.
Given data from a weakly stationary stochastic process in discrete time, and any L-step ahead linear predictor estimated from that data, we will construct an approximately unbiased estimator of the resulting mean squared error of L-step ahead linear prediction. The motivation for the estimator is based on frequency domain cross-validation, and hence the range of validity and applicability of the resulting selection method is not limited by particular assumptions about the structure of the underlying stochastic process or the form of the fitted linear predictors. We also propose a new frequency domain predictor fitting method. The method provides a natural finite-past analog to the existing spectral factorization techniques, and it compares favorably with the existing techniques, both asymptotically and for finite samples. In a Monte Carlo study, we compare several predictor selection methods, at lead times one and five. The performance criterion used is the mean squared prediction error of the selected predictor. The new selection methods work well, and a comparison of results for the two different lead times underscores the need for tailoring the selection criterion to suit the lead time.  相似文献   

10.
The results of analyzing experimental data using a parametric model may heavily depend on the chosen model for regression and variance functions, moreover also on a possibly underlying preliminary transformation of the variables. In this paper we propose and discuss a complex procedure which consists in a simultaneous selection of parametric regression and variance models from a relatively rich model class and of Box-Cox variable transformations by minimization of a cross-validation criterion. For this it is essential to introduce modifications of the standard cross-validation criterion adapted to each of the following objectives: 1. estimation of the unknown regression function, 2. prediction of future values of the response variable, 3. calibration or 4. estimation of some parameter with a certain meaning in the corresponding field of application. Our idea of a criterion oriented combination of procedures (which usually if applied, then in an independent or sequential way) is expected to lead to more accurate results. We show how the accuracy of the parameter estimators can be assessed by a “moment oriented bootstrap procedure", which is an essential modification of the “wild bootstrap” of Härdle and Mammen by use of more accurate variance estimates. This new procedure and its refinement by a bootstrap based pivot (“double bootstrap”) is also used for the construction of confidence, prediction and calibration intervals. Programs written in Splus which realize our strategy for nonlinear regression modelling and parameter estimation are described as well. The performance of the selected model is discussed, and the behaviour of the procedures is illustrated, e.g., by an application in radioimmunological assay.  相似文献   

11.
We discuss the impact of tuning parameter selection uncertainty in the context of shrinkage estimation and propose a methodology to account for problems arising from this issue: Transferring established concepts from model averaging to shrinkage estimation yields the concept of shrinkage averaging estimation (SAE) which reflects the idea of using weighted combinations of shrinkage estimators with different tuning parameters to improve overall stability, predictive performance and standard errors of shrinkage estimators. Two distinct approaches for an appropriate weight choice, both of which are inspired by concepts from the recent literature of model averaging, are presented: The first approach relates to an optimal weight choice with regard to the predictive performance of the final weighted estimator and its implementation can be realized via quadratic programming. The second approach has a fairly different motivation and considers the construction of weights via a resampling experiment. Focusing on Ridge, Lasso and Random Lasso estimators, the properties of the proposed shrinkage averaging estimators resulting from these strategies are explored by means of Monte-Carlo studies and are compared to traditional approaches where the tuning parameter is simply selected via cross validation criteria. The results show that the proposed SAE methodology can improve an estimators’ overall performance and reveal and incorporate tuning parameter uncertainty. As an illustration, selected methods are applied to some recent data from a study on leadership behavior in life science companies.  相似文献   

12.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

13.
The beta regression models are commonly used by practitioners to model variables that assume values in the standard unit interval (0, 1). In this paper, we consider the issue of variable selection for beta regression models with varying dispersion (VBRM), in which both the mean and the dispersion depend upon predictor variables. Based on a penalized likelihood method, the consistency and the oracle property of the penalized estimators are established. Following the coordinate descent algorithm idea of generalized linear models, we develop new variable selection procedure for the VBRM, which can efficiently simultaneously estimate and select important variables in both mean model and dispersion model. Simulation studies and body fat data analysis are presented to illustrate the proposed methods.  相似文献   

14.
Family studies are often conducted to examine the existence of familial aggregation. Particularly, twin studies can model separately the genetic and environmental contribution. Here we estimate the heritability of quantitative traits via variance components of random-effects in linear mixed models (LMMs). The motivating example was a myopia twin study containing complex nesting data structures: twins and siblings in the same family and observations on both eyes for each individual. Three models are considered for this nesting structure. Our proposal takes into account the model uncertainty in both covariates and model structures via an extended Bayesian model averaging (EBMA) procedure. We estimate the heritability using EBMA under three suggested model structures. When compared with the results under the model with the highest posterior model probability, the EBMA estimate has smaller variation and is slightly conservative. Simulation studies are conducted to evaluate the performance of variance-components estimates, as well as the selections of risk factors, under the correct or incorrect structure. The results indicate that EBMA, with consideration of uncertainties in both covariates and model structures, is robust in model misspecification than the usual Bayesian model averaging (BMA) that considers only uncertainty in covariates selection.  相似文献   

15.
This paper is concerned with the problem of constructing a good predictive distribution relative to the Kullback–Leibler information in a linear regression model. The problem is equivalent to the simultaneous estimation of regression coefficients and error variance in terms of a complicated risk, which yields a new challenging issue in a decision-theoretic framework. An estimator of the variance is incorporated here into a loss for estimating the regression coefficients. Several estimators of the variance and of the regression coefficients are proposed and shown to improve on usual benchmark estimators both analytically and numerically. Finally, the prediction problem of a distribution is noted to be related to an information criterion for model selection like the Akaike information criterion (AIC). Thus, several AIC variants are obtained based on proposed and improved estimators and are compared numerically with AIC as model selection procedures.  相似文献   

16.
We propose a new criterion for model selection in prediction problems. The covariance inflation criterion adjusts the training error by the average covariance of the predictions and responses, when the prediction rule is applied to permuted versions of the data set. This criterion can be applied to general prediction problems (e.g. regression or classification) and to general prediction rules (e.g. stepwise regression, tree-based models and neural nets). As a by-product we obtain a measure of the effective number of parameters used by an adaptive procedure. We relate the covariance inflation criterion to other model selection procedures and illustrate its use in some regression and classification problems. We also revisit the conditional bootstrap approach to model selection.  相似文献   

17.
In using survey data, the cross-sectional dispersion of forecasts is commonly used as a proxy for uncertainty. This article proposes a test for the validity of this practice that is a modification of Amemiya's (1977) procedure for estimating heteroscedasticity functions. To deal with the common practical problem of overlapping forecasts, a moving average specification is employed. The technique is applied to the Livingston forecasts of several variables, and the results suggest a significant positive relationship between cross-forecaster dispersion (a measure of forecaster discord) and the variance of ex post prediction errors.  相似文献   

18.
Motivated by Shibata’s (1980) asymptotic efficiency results this paper dis-cusses the asymptotic efficiency of the order selected by a selection procedure for an infinite order autoregressive process with nonzero mean and unob servable errors that constitute a sequence of independent Gaussian random variables with mean zero and variance σ2 The asymptotic efficiency is established for AIC–type selection criteria such as AIC’, FPE, and Sn(k). In addition, some asymptotic results about the estimators of the parameters of the process and the error–sequence are presented.  相似文献   

19.
The adaptive least absolute shrinkage and selection operator (Lasso) and least absolute deviation (LAD)-Lasso are two attractive shrinkage methods for simultaneous variable selection and regression parameter estimation. While the adaptive Lasso is efficient for small magnitude errors, LAD-Lasso is robust against heavy-tailed errors and severe outliers. In this article, we consider a data-driven convex combination of these two modern procedures to produce a robust adaptive Lasso, which not only enjoys the oracle properties, but synthesizes the advantages of the adaptive Lasso and LAD-Lasso. It fully adapts to different error structures including the infinite variance case and automatically chooses the optimal weight to achieve both robustness and high efficiency. Extensive simulation studies demonstrate a good finite sample performance of the robust adaptive Lasso. Two data sets are analyzed to illustrate the practical use of the procedure.  相似文献   

20.
Two versions of Yates-Grundy type variance estimators are usually employed for large samples when estimating a survey population total by a generalized regression (Greg, in brief) predictor motivated by consideration of a linear regression model. Their two alternative modifications are developed so that the limiting values of the design expectations of the model expectations of variance estimators 'match' respectively the (I) model expectations of the Taylor approximation of the design variance of the Greg predictor and the (II) limiting value of the design expectation of the model expectation of the squared difference between the Greg predictor and the population total. The exercise is extended to yield modifications needed when randomized response (RR) is only available rather than direct response (DR) when one encounters sensitive issues demanding protection of privacy. A comparative study based on simulation is presented for illustration..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号