首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The discrete stable family constitutes an interesting two-parameter model of distributions on the non-negative integers with a Paretian tail. The practical use of the discrete stable distribution is inhibited by the lack of an explicit expression for its probability function. Moreover, the distribution does not possess moments of any order. Therefore, the usual tools—such as the maximum-likelihood method or even the moment method—are not feasible for parameter estimation. However, the probability generating function of the discrete stable distribution is available in a simple form. Hence, we initially explore the application of some existing estimation procedures based on the empirical probability generating function. Subsequently, we propose a new estimation method by minimizing a suitable weighted L 2-distance between the empirical and the theoretical probability generating functions. In addition, we provide a goodness-of-fit statistic based on the same distance.  相似文献   

2.
We present a graphical method based on the empirical probability generating function for preliminary statistical analysis of distributions for counts. The method is especially useful in fitting a Poisson model, or for identifying alternative models as well as possible outlying observations from general discrete distributions.  相似文献   

3.
In this article the probability generating functions of the extended Farlie–Gumbel–Morgenstern family for discrete distributions are derived. Using the probability generating function approach various properties are examined, the expressions for probabilities, moments, and the form of the conditional distributions are obtained. Bivariate version of the geometric and Poisson distributions are used as illustrative examples. Their covariance structure and estimation of parameters for a data set are briefly discussed. A new copula is also introduced.  相似文献   

4.
ABSTRACT

A new discrete distribution that depends on two parameters is introduced in this article. From this new distribution the geometric distribution is obtained as a special case. After analyzing some of its properties such as moments and unimodality, recurrences for the probability mass function and differential equations for its probability generating function are derived. In addition to this, parameters are estimated by maximum likelihood estimation numerically maximizing the log-likelihood function. Expected frequencies are calculated for different sets of data to prove the versatility of this discrete model.  相似文献   

5.
In this paper, we introduce a new family of discrete distributions and study its properties. It is shown that the new family is a generalization of discrete Marshall-Olkin family of distributions. In particular, we study generalized discrete Weibull distribution in detail. Discrete Marshall-Olkin Weibull distribution, exponentiated discrete Weibull distribution, discrete Weibull distribution, discrete Marshall-Olkin generalized exponential distribution, exponentiated geometric distribution, generalized discrete exponential distribution, discrete Marshall-Olkin Rayleigh distribution and exponentiated discrete Rayleigh distribution are sub-models of generalized discrete Weibull distribution. We derive some basic distributional properties such as probability generating function, moments, hazard rate and quantiles of the generalized discrete Weibull distribution. We can see that the hazard rate function can be decreasing, increasing, bathtub and upside-down bathtub shape. Estimation of the parameters are done using maximum likelihood method. A real data set is analyzed to illustrate the suitability of the proposed model.  相似文献   

6.
A two-parameter class of discrete distributions, Abel series distributions, generated by expanding a suitable pa,rametric function into a series of Abel polynomials is discussed. An Abel series distribution occurs in fluctuations of sample functions of stochastic processes and has applications in insurance risk, queueing, dam and storage processes. The probability generating function and the factorial moments of the Abel series distributions are obtained in closed forms. It is pointed out that the name of the generalized Poisson distribution of Consul and Jain is justified by the form of its generating function. Finally it is shown that this generalized Poisson distribution is the only member of the Abel series distributions which is closed under convolution.  相似文献   

7.
A discrete distribution in which the probabilities are expressible as Laguerre polynomials is formulated in terms of a probability generating function involving three parameters. The skewness and kurtosis is given for members of the family corresponding to various parameter values. Several estimators of the parameters are proposed, including some based on minimum chi-square. All the estimators are compared on the basis of asymptotic relative efficiency.  相似文献   

8.
In this article we introduce a probability distribution generated by a mixture of discrete random variables to capture uncertainty, feeling, and overdispersion, possibly present in ordinal data surveys. The choice of the components of the new model is motivated by a study on the data generating process. Inferential issues concerning the maximum likelihood estimates and the validation steps are presented; then, some empirical analyses are given to support the usefulness of the approach. Discussion on further extensions of the model ends the article.  相似文献   

9.
In this article, we develop a method to estimate the two parameters of the discrete stable distribution. By minimizing the quadratic distance between transforms of the empirical and theoretical probability generating functions, we obtain estimators simple to calculate, asymptotically unbiased, and normally distributed. We also derive the expression for their variance–covariance matrix. We simulate several samples of discrete stable distributed datasets with different parameters, to analyze the effect of tuncation on the right tail of the distribution.  相似文献   

10.
We propose methods for detecting structural changes in time series with discrete‐valued observations. The detector statistics come in familiar L2‐type formulations incorporating the empirical probability generating function. Special emphasis is given to the popular models of integer autoregression and Poisson autoregression. For both models, we study mainly structural changes due to a change in distribution, but we also comment for the classical problem of parameter change. The asymptotic properties of the proposed test statistics are studied under the null hypothesis as well as under alternatives. A Monte Carlo power study on bootstrap versions of the new methods is also included along with a real data example.  相似文献   

11.
ABSTRACT

A new discrete probability distribution with integer support on (?∞, ∞) is proposed as a discrete analog of the continuous logistic distribution. Some of its important distributional and reliability properties are established. Its relationship with some known distributions is discussed. Parameter estimation by maximum-likelihood method is presented. Simulation is done to investigate properties of maximum-likelihood estimators. Real life application of the proposed distribution as empirical model is considered by conducting a comparative data fitting with Skellam distribution, Kemp's discrete normal, Roy's discrete normal, and discrete Laplace distribution.  相似文献   

12.
A common feature for compound Poisson and Katz distributions is that both families may be viewed as generalizations of the Poisson law. In this paper, we present a unified approach in testing the fit to any distribution belonging to either of these families. The test involves the probability generating function, and it is shown to be consistent under general alternatives. The asymptotic null distribution of the test statistic is obtained, and an effective bootstrap procedure is employed in order to investigate the performance of the proposed test with real and simulated data. Comparisons with classical methods based on the empirical distribution function are also included.  相似文献   

13.
Discrete associated kernels method and extensions   总被引:1,自引:0,他引:1  
Discrete kernel estimation of a probability mass function (p.m.f.), often mentioned in the literature, has been far less investigated in comparison with continuous kernel estimation of a probability density function (p.d.f.). In this paper, we are concerned with a general methodology of discrete kernels for smoothing a p.m.f. f. We give a basic of mathematical tools for further investigations. First, we point out a generalizable notion of discrete associated kernel which is defined at each point of the support of f and built from any parametric discrete probability distribution. Then, some properties of the corresponding estimators are shown, in particular pointwise and global (asymptotical) properties. Other discrete kernels are constructed from usual discrete probability distributions such as Poisson, binomial and negative binomial. For small samples sizes, underdispersed discrete kernel estimators are more interesting than the empirical estimator; thus, an importance of discrete kernels is illustrated. The choice of smoothing bandwidth is classically investigated according to cross-validation and, novelly, to excess of zeros methods. Finally, a unification way of this method concerning the general probability function is discussed.  相似文献   

14.
In this paper, we are interested in the weighted distributions of a bivariate three parameter logarithmic series distribution studied by Kocherlakota and Kocherlakota (1990). The weighted versions of the model are derived with weight W(x,y) = x[r] y[s]. Explicit expressions for the probability mass function and probability generating functions are derived in the case r = s = l. The marginal and conditional distributions are derived in the general case. The maximum likelihood estimation of the parameters, in both two parameter and three parameter cases, is studied. A procedure for computer generation of bivariate data from a discrete distribution is described. This enables us to present two examples, in order to illustrate the methods developed, for finding the maximum likelihood estimates.  相似文献   

15.
In this article, we use the bivariate Poisson distribution obtained by the trivariate reduction method and compound it with a geometric distribution to derive a bivariate Pólya-Aeppli distribution. We then discuss a number of properties of this distribution including the probability generating function, correlation structure, probability mass function, recursive relations, and conditional distributions. The generating function of the tail probabilities is also obtained. Moment estimation of the parameters is then discussed and illustrated with a numerical example.  相似文献   

16.
In this paper, a new method is proposed for generating discrete distributions. A special class of the distributions, namely, the T-geometric family contains the discrete analogues of continuous distributions. Some general properties of the T-geometric family of distributions are obtained. A member of the T-geometric family, namely, the exponentiated-exponential–geometric distribution is defined and studied. Various properties of the exponentiated-exponential–geometric distribution such as the unimodality, the moments and the probability generating function are discussed. The method of maximum likelihood estimation is proposed for estimating the model parameters. Three real data sets are used to illustrate the applications of the exponentiated-exponential–geometric distribution.  相似文献   

17.
《Statistical Methodology》2013,10(6):589-603
In this paper, a new method is proposed for generating discrete distributions. A special class of the distributions, namely, the T-geometric family contains the discrete analogues of continuous distributions. Some general properties of the T-geometric family of distributions are obtained. A member of the T-geometric family, namely, the exponentiated-exponential–geometric distribution is defined and studied. Various properties of the exponentiated-exponential–geometric distribution such as the unimodality, the moments and the probability generating function are discussed. The method of maximum likelihood estimation is proposed for estimating the model parameters. Three real data sets are used to illustrate the applications of the exponentiated-exponential–geometric distribution.  相似文献   

18.
This paper proposes two methods of estimation for the parameters in a Poisson-exponential model. The proposed methods combine the method of moments with a regression method based on the empirical moment generating function. One of the methods is an adaptation of the mixed-moments procedure of Koutrouvelis & Canavos (1999). The asymptotic distribution of the estimator obtained with this method is derived. Finite-sample comparisons are made with the maximum likelihood estimator and the method of moments. The paper concludes with an exploratory-type analysis of real data based on the empirical moment generating function.  相似文献   

19.
《随机性模型》2013,29(1):31-42
Abstract

We give a sufficient condition for the exponential decay of the tail of a discrete probability distribution π = (π n ) n≥0 in the sense that lim n→∞(1/n) log∑ i>n π i  = ?θ with 0 < θ < ∞. We focus on analytic properties of the probability generating function of a discrete probability distribution, especially, the radius of convergence and the number of poles on the circle of convergence. Furthermore, we give an example of an M/G/1 type Markov chain such that the tail of its stationary distribution does not decay exponentially.  相似文献   

20.
We present a test of the fit to a Poisson model based on the empirical probability generating function (epgf). We derive the limiting distribution of the test under the Poisson hypothesis and show that a rescaling of it is approximately independent of the mean parameter in the Poisson distribution. When inspected under a simulation study over a range of alternative distributions, we find that this test shows reasonable behaviour compared to other goodness-of-fit tests like the Poisson index of dispersion and smooth test applied to the Poisson model. These results illustrate that epgf-based methods for anlyzing count data are promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号