首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theobald (1974) compares Ordinary Least Squares and Ridge Regression estimators of regression parameters using a generalized mean squared error criterion. This paper presents the generalized mean squared error of a Principal Components Regression estimator and comparisons are made with each of the above estimators. In general the choice of which estimator to use depends on the magnitude and the orientation of the unknown parameter vector.  相似文献   

2.
This paper studies a class of shrinkage estimators of the vector of regression coefficients. The small disturbance approximations for the bias and the mean squared error matrix of the estimator are derived. In the sense of mean squared error, these estimators dominate the least squares estimator and the generalized Stein estimator developed by Hosmane (1988).  相似文献   

3.
This paper introduces two estimators, a boundary corrected minimum variance kernel estimator based on a uniform kernel and a discrete frequency polygon estimator, for the cell probabilities of ordinal contingency tables. Simulation results show that the minimum variance boundary kernel estimator has a smaller average sum of squared error than the existing boundary kernel estimators. The discrete frequency polygon estimator is simple and easy to interpret, and it is competitive with the minimum variance boundary kernel estimator. It is proved that both estimators have an optimal rate of convergence in terms of mean sum of squared error, The estimators are also defined for high-dimensional tables.  相似文献   

4.
In this paper an estimator of the finite population mean using auxiliary information in sample surveys has been proposed. The bias and mean squared error are obtained under large sample approximation. It has been shown that the proposed estimator performs better than some recently published estimators.  相似文献   

5.
The authors review log‐linear models for estimating the size of a closed population and propose a new log‐linear estimator for experiments having between animal heterogeneity and a behavioral response. They give a general formula for evaluating the asymptotic biases of estimators of abundance derived from log‐linear models. They propose simple frequency modifications for reducing these asymptotic biases and investigate the modifications in a Monte Carlo experiment which reveals that they reduce both the bias and the mean squared error of abundance estimators.  相似文献   

6.

This paper is concerned with properties (bias, standard deviation, mean square error and efficiency) of twenty six estimators of the intraclass correlation in the analysis of binary data. Our main interest is to study these properties when data are generated from different distributions. For data generation we considered three over-dispersed binomial distributions, namely, the beta-binomial distribution, the probit normal binomial distribution and a mixture of two binomial distributions. The findings regarding bias, standard deviation and mean squared error of all these estimators, are that (a) in general, the distributions of biases of most of the estimators are negatively skewed. The biases are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution; (b) the standard deviations are smallest when data are generated from the beta-binomial distribution; and (c) the mean squared errors are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution. Of the 26, nine estimators including the maximum likelihood estimator, an estimator based on the optimal quadratic estimating equations of Crowder (1987), and an analysis of variance type estimator is found to have least amount of bias, standard deviation and mean squared error. Also, the distributions of the bias, standard deviation and mean squared error for each of these estimators are, in general, more symmetric than those of the other estimators. Our findings regarding efficiency are that the estimator based on the optimal quadratic estimating equations has consistently high efficiency and least variability in the efficiency results. In the important range in which the intraclass correlation is small (≤0 5), on the average, this estimator shows best efficiency performance. The analysis of variance type estimator seems to do well for larger values of the intraclass correlation. In general, the estimator based on the optimal quadratic estimating equations seems to show best efficiency performance for data from the beta-binomial distribution and the probit normal binomial distribution, and the analysis of variance type estimator seems to do well for data from the mixture distribution.  相似文献   

7.
Abstract

In this article, we propose a new improved and efficient biased estimation method which is a modified restricted Liu-type estimator satisfying some sub-space linear restrictions in the binary logistic regression model. We study the properties of the new estimator under the mean squared error matrix criterion and our results show that under certain conditions the new estimator is superior to some other estimators. Moreover, a Monte Carlo simulation study is conducted to show the performance of the new estimator in the simulated mean squared error and predictive median squared errors sense. Finally, a real application is considered.  相似文献   

8.
At least two computer program packages, SPSS and STRATA, use simulated Bernoulli trials to draw (without replacement) a random sample of records from a finite population of records. Therefore, the size of the sample is a random variable. Two estimators of a population total under this sampling procedure are compared with the usual estimator under simple random sampling. Conditions under which the Bernoulli sampling estimators have almost the same mean squared error as the simple random-sample estimator are illustrated.  相似文献   

9.
Much of the small‐area estimation literature focuses on population totals and means. However, users of survey data are often interested in the finite‐population distribution of a survey variable and in the measures (e.g. medians, quartiles, percentiles) that characterize the shape of this distribution at the small‐area level. In this paper we propose a model‐based direct estimator (MBDE, Chandra and Chambers) of the small‐area distribution function. The MBDE is defined as a weighted sum of sample data from the area of interest, with weights derived from the calibrated spline‐based estimate of the finite‐population distribution function introduced by Harms and Duchesne, under an appropriately specified regression model with random area effects. We also discuss the mean squared error estimation of the MBDE. Monte Carlo simulations based on both simulated and real data sets show that the proposed MBDE and its associated mean squared error estimator perform well when compared with alternative estimators of the area‐specific finite‐population distribution function.  相似文献   

10.
Some shrunken estimators of the normal population variance 2 are proposed and compared with the usual estimator, s2, in terms of mean squared error.  相似文献   

11.

In this paper, we discuss an estimation problem of the mean in the inverse Gaussian distribution with a known coefficient of variation. Two types of linear estimators for the mean, the linear minimum variance unbiased estimator and the linear minimum mean squared error estimator, are constructed by using the squared error loss function and their properties are examined. It is observed that, for small samples the performance of the proposed estimators is better than that of the maximum likelihood estimator, when the coefficient of variation is large.  相似文献   

12.
Abstract

The availability of some extra information, along with the actual variable of interest, may be easily accessible in different practical situations. A sensible use of the additional source may help to improve the properties of statistical techniques. In this study, we focus on the estimators for calibration and intend to propose a setup where we reply only on first two moments instead of modeling the whole distributional shape. We have proposed an estimator for linear calibration problems and investigated it under normal and skewed environments. We have partitioned its mean squared error into intrinsic and estimation components. We have observed that the bias and mean squared error of the proposed estimator are function of four dimensionless quantities. It is to be noticed that both the classical and the inverse estimators become the special cases of the proposed estimator. Moreover, the mean squared error of the proposed estimator and the exact mean squared error of the inverse estimator coincide. We have also observed that the proposed estimator performs quite well for skewed errors as well. The real data applications are also included in the study for practical considerations.  相似文献   

13.
In this paper a new class of shrinkage estimators has been introduced for the shape parameter in an independently identically distributed two-parameterWeibull model under censored sampling. The main idea is to incorporate the prior guessed value by correcting the standard estimator, which is essentially an unbiased estimator, with optimally weighted ratios of the guessed value and the standard estimator, instead of considering a convex combination of the standard estimator and the difference of the guessed value and the standard estimator. The resulting estimator dominates the standard estimator in a surprisingly large neighborhood of the guessed value. The suggested estimator has also been compared with the minimum mean squared error estimator and a class of estimators suggested by Singh and Shukla in IAPQR Trans 25(2), 107–118, 2000. It is found that the suggested class of estimators has lesser bias as well as lesser mean squared error than its competitors subject to certain conditions.   相似文献   

14.
In this article we consider the Equity estimator proposed by Krishnamurthi and Rangaswamy. We show that this estimator is inconsistent and does not necessarily improve on the mean squared error (MSE) of the least squares (LS) estimator. We perform a Monte Carlo experiment based on the price-promotion model used in marketing research, with marketing data, comparing the MSE of the Equity estimator to that of two empirical Bayes estimators and the LS estimator. We find that the empirical Bayes estimators have substantially smaller MSE than the Equity estimator in almost every case.  相似文献   

15.
An estimator for location, given a sample of only four or five observations, is proposed. The underlying distribution on of the sample may (with probability p) be contaminated by an outlier from a rightly-skewed distribution. The estimator minimizes the maximum mean squared error over all values of p. In fact, there exists an estimator which is unbiased in both the outlier - free and extreme-outlier cases, but its mean square error is substantially higher than the mean squared error for the minimax estimator. Mean squared errors for various underlying distributional situations are calculated and compared with those of other location estimators such as the mean and the median.  相似文献   

16.
In this paper we consider the double k-class estimator which incorporates the Stein variance estimator. This estimator is called the SVKK estimator. We derive the explicit formula for the mean squared error (MSE) of the SVKK estimator for each individual regression coefficient. It is shown analytically that the MSE performance of the Stein-rule estimator for each individual regression coefficient can be improved by utilizing the Stein variance estimator. Also, MSE’s of several estimators included in a family of the SVKK estimators are compared by numerical evaluations.  相似文献   

17.
Nonparametric and parametric estimators are combined to minimize the mean squared error among their linear combinations. The combined estimator is consistent and for large sample sizes has a smaller mean squared error than the nonparametric estimator when the parametric assumption is violated. If the parametric assumption holds, the combined estimator has a smaller MSE than the parametric estimator. Our simulation examples focus on mean estimation when data may follow a lognormal distribution, or can be a mixture with an exponential or a uniform distribution. Motivating examples illustrate possible application areas.  相似文献   

18.
In this paper, a new power transformation estimator of population mean in the presence of non-response has been suggested. The estimator of mean obtained from proposed technique remains better than the estimators obtained from ratio or mean methods of imputation. The mean squared error of the resultant estimator is less than that of the estimator obtained on the basis of ratio method of imputation for the optinum choice of parameters. An estimator for estimating a parameter involved in the process of new method of imputation has been discussed. The MSE expressions for the proposed estimators have been derived analytically and compared empirically. Product method of imputation for negatively correlated variables has also been introduced. The work has been extended to the case of multi-auxiliary information to be used for imputation.  相似文献   

19.
A large-sample test for testing the equality of two effect sizes is presented. The null and non-null distributions of the proposed test statistic are derived. Further, the problem of estimating the effect size is considered when it is a priori suspected that two effect sizes may be close to each other. The combined data from all the samples leads to more efficient estimator of the effect size. We propose a basis for optimally combining estimation problems when there is uncertainty concerning the appropriate statistical model-estimator to use in representing the sampling process. The objective here is to produce natural adaptive estimators with some good statistical properties. In the context of two bivariate statistical models, the expressions for the asymptotic mean squared error of the proposed estimators are derived and compared with the parallel expressions for the benchmark estimators. We demonstrate that the suggested preliminary test estimator has superior asymptotic mean squared error performance relative to the benchmark and pooled estimators. A simulation study and application of the methodology to real data are presented.  相似文献   

20.
The small-sample bias and root mean squared error of several distribution-free estimators of the variance of the sample median are examined. A new estimator is proposed that is easy to compute and tends to have the smallest bias and root mean squared error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号