首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
SUMMARY Ranked-set sampling is a widely used sampling procedure when sample observations are expensive or difficult to obtain. It departs from simple random sampling by seeking to spread the observations in the sample widely over the distribution or population. This is achieved by ranking methods which may need to employ concomitant information. The ranked-set sample mean is known to be more efficient than the corresponding simple random sample mean. Instead of the ranked-set sample mean, this paper considers the corresponding optimal estimator: the ranked-set best linear unbiased estimator. This is shown to be more efficient, even for normal data, but particularly for skew data, such as from an exponential distribution. The corresponding forms of the estimators are quite distinct from the ranked-set sample mean. Improvement holds where the ordering is perfect or imperfect, with this prospect of improper ordering being explored through the use of concomitants. In addition, the corresponding optimal linear estimator of a scale parameter is also discussed. The results are applied to a biological problem that involves the estimation of root weights for experimental plants, where the expense of measurement implies the need to minimize the number of observations taken.  相似文献   

2.
This paper introduces a nonparametric test of symmetry for ranked-set samples to test the asymmetry of the underlying distribution. The test statistic is constructed from the Cramér-von Mises distance function which measures the distance between two probability models. The null distribution of the test statistic is established by constructing symmetric bootstrap samples from a given ranked-set sample. It is shown that the type I error probabilities are stable across all practical symmetric distributions and the test has high power for asymmetric distributions.  相似文献   

3.
Multistage ranked-set sampling (MRSS) is a generalization of ranked-set sampling in which multiple stages of ranking are used. It is known that for a fixed distribution under perfect rankings, each additional stage provides a gain in efficiency when estimating the population mean. However, the maximum possible efficiency for the MRSS sample mean relative to the simple random sampling sample mean has not previously been determined. In this paper, we provide a method for computing this maximum possible efficiency under perfect rankings for any choice of the set size and the number of stages. The maximum efficiency tends to infinity as the number of stages increases, and, for large numbers of stages, the efficiency-maximizing distributions are symmetric multi-modal distributions where the number of modes matches the set size. The results in this paper correct earlier assertions in the literature that the maximum efficiency is bounded and that it is achieved when the distribution is uniform.  相似文献   

4.
Recursive computation of inclusion probabilities in ranked-set sampling   总被引:1,自引:0,他引:1  
We derive recursive algorithms for computing first-order and second-order inclusion probabilities for ranked-set sampling from a finite population. These algorithms make it practical to compute inclusion probabilities even for relatively large sample and population sizes. As an application, we use the inclusion probabilities to examine the performance of Horvitz-Thompson estimators under different varieties of balanced ranked-set sampling. We find that it is only for balanced Level 2 sampling that the Horvitz-Thompson estimator can be relied upon to outperform the simple random sampling mean estimator.  相似文献   

5.
We develop an omnibus two-sample test for ranked-set sampling (RSS) data. The test statistic is the conditional probability of seeing the observed sequence of ranks in the combined sample, given the observed sequences within the separate samples. We compare the test to existing tests under perfect rankings, finding that it can outperform existing tests in terms of power, particularly when the set size is large. The test does not maintain its level under imperfect rankings. However, one can create a permutation version of the test that is comparable in power to the basic test under perfect rankings and also maintains its level under imperfect rankings. Both tests extend naturally to judgment post-stratification, unbalanced RSS, and even RSS with multiple set sizes. Interestingly, the tests have no simple random sampling analog.  相似文献   

6.
Ranked-set sampling (RSS) and judgment post-stratification (JPS) use ranking information to obtain more efficient inference than is possible using simple random sampling. Both methods were developed with subjective, judgment-based rankings in mind, but the idea of ranking using a covariate has received a lot of attention. We provide evidence here that when rankings are done using a covariate, the standard RSS and JPS mean estimators no longer make efficient use of the available information. We first show that when rankings are done using a covariate, the standard nonparametric mean estimators in JPS and unbalanced RSS are inadmissible under squared error loss. We then show that when rankings are done using a covariate, nonparametric regression techniques yield mean estimators that tend to be significantly more efficient than the standard RSS and JPS mean estimators. We conclude that the standard estimators are best reserved for settings where only subjective, judgment-based rankings are available.  相似文献   

7.
The exact null distribution of the ranked-set sample (RSS) sign test statistic is computed. The power of this test is compared with the simple random sample (SRS) sign test for some continuous symmetric distributions. The problem of imperfect judgement is discussed. The superiority of RSS over SRS is demonstrated.  相似文献   

8.
We develop a simple approach to finding the Fisher information matrix (FIM) for a single pair of order statistic and its concomitant, and Type II right, left, and doubly censored samples from an arbitrary bivariate distribution. We use it to determine explicit expressions for the FIM for the three parameters of Downton's bivariate exponential distribution for single pairs and Type II censored samples. We evaluate the FIM in censored samples for finite sample sizes and determine its limiting form as the sample size increases. We discuss implications of our findings to inference and experimental design using small and large censored samples and for ranked-set samples from this distribution.  相似文献   

9.
A test is proposed that extends the Chen-Wolfe (1990) test for umbrella alternatives with an unknown peak to use with ranked-set samples data. This follows from ideas in Bohn & Wolfe (1992), Magel (1994), and Hartlaub & Wolfe (1999). Critical values are simulated for the proposed test based on ranked-set samples of size 2 for 3, 4 and 5 populations. A power study is conducted comparing the proposed test using ranked-set samples with the Chen-Wolfe and Mack-Wolfe tests using simple random samples. Results are given.  相似文献   

10.
In ranked-set sampling (RSS), a stratification by ranks is used to obtain a sample that tends to be more informative than a simple random sample of the same size. Previous work has shown that if the rankings are perfect, then one can use RSS to obtain Kolmogorov–Smirnov type confidence bands for the CDF that are narrower than those obtained under simple random sampling. Here we develop Kolmogorov–Smirnov type confidence bands that work well whether the rankings are perfect or not. These confidence bands are obtained by using a smoothed bootstrap procedure that takes advantage of special features of RSS. We show through a simulation study that the coverage probabilities are close to nominal even for samples with just two or three observations. A new algorithm allows us to avoid the bootstrap simulation step when sample sizes are relatively small.  相似文献   

11.
Abstract

Partially rank-ordered set sampling (PROSS) is a generalization of ranked-set sampling (RSS) in which the ranker is not required to give a full ranking in each set. In this paper, we compare the efficiency of the sample mean as an estimator of the population mean under PROSS, RSS, and simple random sampling (SRS). We find that for fixed set size and total sample size, the efficiency of PROSS falls between that of SRS and that of RSS. We also develop a method for finding a sharp upper bound on the efficiency of PROSS relative to SRS for a particular design.  相似文献   

12.
ABSTRACT

Kernel estimation of probability density functions is considered when ranked-set samples are available. The properties of the resulting estimators are derived for small and large samples, while performance with respect to the usual simple random sample estimators is investigated for a range of probability density models.  相似文献   

13.
Generating samples from a two-stage distribution is an important part of the study of mixture models. These samples are used to examine estimation procedures, and other properties of the mixture model. In this paper we present an exemplary sampling method for generating data from the mixed distribution. This method uses the order statistic spacings of the mixing distribution and random sampling from the distribution conditional on the mixing variable to produce samples from the mixed distribution. We show that this exemplary procedure often produces data with an empirical distribution function closer to the mixed distribution than the Method of Composition. We illustrate the method with an example.  相似文献   

14.
In the nonparametric setting, the standard bootstrap method is based on the empirical distribution function of a random sample. The author proposes, by means of the empirical likelihood technique, an alternative bootstrap procedure under a nonparametric model in which one has some auxiliary information about the population distribution. By proving the almost sure weak convergence of the modified bootstrapped empirical process, the validity of the proposed bootstrap procedure is established. This new result is used to obtain bootstrap confidence bands for the population distribution function and to perform the bootstrap Kolmogorov test in the presence of auxiliary information. Other applications include bootstrapping means and variances with auxiliary information. Three simulation studies are presented to demonstrate the performance of the proposed bootstrap procedure for small samples.  相似文献   

15.
In this paper, we consider a nonparametric test procedure for multivariate data with grouped components under the two sample problem setting. For the construction of the test statistic, we use linear rank statistics which were derived by applying the likelihood ratio principle for each component. For the null distribution of the test statistic, we apply the permutation principle for small or moderate sample sizes and derive the limiting distribution for the large sample case. Also we illustrate our test procedure with an example and compare with other procedures through simulation study. Finally, we discuss some additional interesting features as concluding remarks.  相似文献   

16.
We show by example that the Fisher information in an imperfect ranked-set sample may be higher than the Fisher information in a perfect ranked-set sample. This corrects certain misconceptions in the literature. The example also provides an additional counterexample to a common claim about the relationship between imperfect rankings and perfect rankings.  相似文献   

17.
Ranked set sampling is a sampling technique that provides substantial cost efficiency in experiments where a quick, inexpensive ranking procedure is available to rank the units prior to formal, expensive and precise measurements. Although the theoretical properties and relative efficiencies of this approach with respect to simple random sampling have been extensively studied in the literature for the infinite population setting, the use of ranked set sampling methods has not yet been explored widely for finite populations. The purpose of this study is to use sheep population data from the Research Farm at Ataturk University, Erzurum, Turkey, to demonstrate the practical benefits of ranked set sampling procedures relative to the more commonly used simple random sampling estimation of the population mean and variance in a finite population. It is shown that the ranked set sample mean remains unbiased for the population mean as is the case for the infinite population, but the variance estimators are unbiased only with use of the finite population correction factor. Both mean and variance estimators provide substantial improvement over their simple random sample counterparts.  相似文献   

18.
Under stratified random sampling, we develop a kth-order bootstrap bias-corrected estimator of the number of classes θ which exist in a study region. This research extends Smith and van Belle’s (1984) first-order bootstrap bias-corrected estimator under simple random sampling. Our estimator has applicability for many settings including: estimating the number of animals when there are stratified capture periods, estimating the number of species based on stratified random sampling of subunits (say, quadrats) from the region, and estimating the number of errors/defects in a product based on observations from two or more types of inspectors. When the differences between the strata are large, utilizing stratified random sampling and our estimator often results in superior performance versus the use of simple random sampling and its bootstrap or jackknife [Burnham and Overton (1978)] estimator. The superior performance is often associated with more observed classes, and we provide insights into optimal designation of the strata and optimal allocation of sample sectors to strata.  相似文献   

19.
A nonparametric exact quantile interval is developed for ranked-set samples. The proposed interval provides higher coverage probability and shorter expected length than its simple random sample analog. In order to achieve the desired confidence level a distribution-free confidence interval that interpolates the adjacent order statistics is constructed.  相似文献   

20.
The usual chi-squared approximation to test statistics based on normal theory for testing covariance structures of multivariate populations is very sensitive to the normality assumption. Two general bootstrap procedures are developed in this paper to obtain approximately valid critical values for these test statistics when the data are not normally distributed. The first is based on separate sampling from individual samples, and the second is based on sampling from pooled samples. Although the second method requires more assumptions, its small sample properties are better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号