首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
This paper describes a Bayesian approach to mixture modelling and a method based on predictive distribution to determine the number of components in the mixtures. The implementation is done through the use of the Gibbs sampler. The method is described through the mixtures of normal and gamma distributions. Analysis is presented in one simulated and one real data example. The Bayesian results are then compared with the likelihood approach for the two examples.  相似文献   

2.
We extend the standard multivariate mixed model by incorporating a smooth time effect and relaxing distributional assumptions. We propose a semiparametric Bayesian approach to multivariate longitudinal data using a mixture of Polya trees prior distribution. Usually, the distribution of random effects in a longitudinal data model is assumed to be Gaussian. However, the normality assumption may be suspect, particularly if the estimated longitudinal trajectory parameters exhibit multimodality and skewness. In this paper we propose a mixture of Polya trees prior density to address the limitations of the parametric random effects distribution. We illustrate the methodology by analyzing data from a recent HIV-AIDS study.  相似文献   

3.
ABSTRACT

In this article we consider the problem of comparing two normal means with unknown common variance using a Bayesian approach. Conventional Bayes factors with improper non informative priors are not well defined. The intrinsic Bayes factors are used to overcome such a difficulty. We derive intrinsic priors whose Bayes factors are asymptotically equivalent to the corresponding intrinsic Bayes factors. We illustrate our results with numerical examples.  相似文献   

4.
The estimation problem of epsilon-skew-normal (ESN) distribution parameters is considered within Bayesian approaches. This family of distributions contains the normal distribution, can be used for analyzing the asymmetric and near-normal data. Bayesian estimates under informative and non informative Jeffreys prior distributions are obtained and performances of ESN family and these estimates are shown via a simulation study. A real data set is also used to illustrate the ideas.  相似文献   

5.
The exponential failure model is studied from the hierarchical point of view. The parameter of the exponential is considered as a random variable with a gamma function as a prior. Futhermore, the scale parameter of the gamma prior isassumed to be a random variable with known hyperprior. Under these assumptions estimators are derived for the exponential parameter and reliability function. Monte Carlo simulation is utilized to compare the various estimators.  相似文献   

6.
In fitting a generalized linear model, many authors have noticed that data sets can show greater residual variability than predicted under the exponential family. Two main approaches have been used to model this overdispersion. The first approach uses a sampling density which is a conjugate mixture of exponential family distributions. The second uses a quasilikelihood which adds a new scale parameter to the exponential likelihood. The approaches are compared by means of a Bayesian analysis using noninformative priors. In examples, it is indicated that the posterior analysis can be significantly different using the two approaches.  相似文献   

7.
In many longitudinal studies multiple characteristics of each individual, along with time to occurrence of an event of interest, are often collected. In such data set, some of the correlated characteristics may be discrete and some of them may be continuous. In this paper, a joint model for analysing multivariate longitudinal data comprising mixed continuous and ordinal responses and a time to event variable is proposed. We model the association structure between longitudinal mixed data and time to event data using a multivariate zero-mean Gaussian process. For modeling discrete ordinal data we assume a continuous latent variable follows the logistic distribution and for continuous data a Gaussian mixed effects model is used. For the event time variable, an accelerated failure time model is considered under different distributional assumptions. For parameter estimation, a Bayesian approach using Markov Chain Monte Carlo is adopted. The performance of the proposed methods is illustrated using some simulation studies. A real data set is also analyzed, where different model structures are used. Model comparison is performed using a variety of statistical criteria.  相似文献   

8.
We consider the hierarchical Bayesian models of change-point problem in a sequence of random variables having either normal population or skew-normal population. Further, we consider the problem of detecting an influential point concerning change point using Bayes factors. Our proposed models are illustrated with the real data example, the annual flow volume data of Nile River at Aswan from 1871 to 1970. The result using our proposed models indicated the largest influential observation in the year 1888 among outliers. We have shown that it is useful to measure the influence of observations on Bayes factors. Here, we consider omitting single observation as well.  相似文献   

9.
Bayesian predictive power, the expectation of the power function with respect to a prior distribution for the true underlying effect size, is routinely used in drug development to quantify the probability of success of a clinical trial. Choosing the prior is crucial for the properties and interpretability of Bayesian predictive power. We review recommendations on the choice of prior for Bayesian predictive power and explore its features as a function of the prior. The density of power values induced by a given prior is derived analytically and its shape characterized. We find that for a typical clinical trial scenario, this density has a u‐shape very similar, but not equal, to a β‐distribution. Alternative priors are discussed, and practical recommendations to assess the sensitivity of Bayesian predictive power to its input parameters are provided. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Summary.  The method of Bayesian model selection for join point regression models is developed. Given a set of K +1 join point models M 0,  M 1, …,  M K with 0, 1, …,  K join points respec-tively, the posterior distributions of the parameters and competing models M k are computed by Markov chain Monte Carlo simulations. The Bayes information criterion BIC is used to select the model M k with the smallest value of BIC as the best model. Another approach based on the Bayes factor selects the model M k with the largest posterior probability as the best model when the prior distribution of M k is discrete uniform. Both methods are applied to analyse the observed US cancer incidence rates for some selected cancer sites. The graphs of the join point models fitted to the data are produced by using the methods proposed and compared with the method of Kim and co-workers that is based on a series of permutation tests. The analyses show that the Bayes factor is sensitive to the prior specification of the variance σ 2, and that the model which is selected by BIC fits the data as well as the model that is selected by the permutation test and has the advantage of producing the posterior distribution for the join points. The Bayesian join point model and model selection method that are presented here will be integrated in the National Cancer Institute's join point software ( http://www.srab.cancer.gov/joinpoint/ ) and will be available to the public.  相似文献   

11.
12.
This paper shows that a minimax Bayes rule and shrinkage estimators can be effectively applied to portfolio selection under the Bayesian approach. Specifically, it is shown that the portfolio selection problem can result in a statistical decision problem in some situations. Following that, we present a method for solving a problem involved in portfolio selection under the Bayesian approach.  相似文献   

13.
In this paper, we study the change-point inference problem motivated by the genomic data that were collected for the purpose of monitoring DNA copy number changes. DNA copy number changes or copy number variations (CNVs) correspond to chromosomal aberrations and signify abnormality of a cell. Cancer development or other related diseases are usually relevant to DNA copy number changes on the genome. There are inherited random noises in such data, therefore, there is a need to employ an appropriate statistical model for identifying statistically significant DNA copy number changes. This type of statistical inference is evidently crucial in cancer researches, clinical diagnostic applications, and other related genomic researches. For the high-throughput genomic data resulting from DNA copy number experiments, a mean and variance change point model (MVCM) for detecting the CNVs is appropriate. We propose to use a Bayesian approach to study the MVCM for the cases of one change and propose to use a sliding window to search for all CNVs on a given chromosome. We carry out simulation studies to evaluate the estimate of the locus of the DNA copy number change using the derived posterior probability. These simulation results show that the approach is suitable for identifying copy number changes. The approach is also illustrated on several chromosomes from nine fibroblast cancer cell line data (array-based comparative genomic hybridization data). All DNA copy number aberrations that have been identified and verified by karyotyping are detected by our approach on these cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号