首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Zernike polynomials arise in several applications such as optical metrology or image analysis on a circular domain. In the present paper, we determine optimal designs for regression models which are represented by expansions in terms of Zernike polynomials. We consider two estimation methods for the coefficients in these models and determine the corresponding optimal designs. The first one is the classical least squares method and Φ p -optimal designs in the sense of Kiefer [Kiefer, J., 1974, General equivalence theory for optimum designs (approximate theory). Annals of Statistics, 2 849–879.] are derived, which minimize an appropriate functional of the covariance matrix of the least squares estimator. It is demonstrated that optimal designs with respect to Kiefer's Φ p -criteria (p>?∞) are essentially unique and concentrate observations on certain circles in the experimental domain. E-optimal designs have the same structure but it is shown in several examples that these optimal designs are not necessarily uniquely determined. The second method is based on the direct estimation of the Fourier coefficients in the expansion of the expected response in terms of Zernike polynomials and optimal designs minimizing the trace of the covariance matrix of the corresponding estimator are determined. The designs are also compared with the uniform designs on a grid, which is commonly used in this context.  相似文献   

2.
Rotatable designs that are available for process/ product optimization trials are mostly symmetric in nature. In many practical situations, response surface designs (RSDs) with mixed factor (unequal) levels are more suitable as these designs explore more regions in the design space but it is hard to get rotatable designs with a given level of asymmetry. When experimenting with unequal factor levels via asymmetric second order rotatable design (ASORDs), the lack of fit of the model may become significant which ultimately leads to the estimation of parameters based on a higher (or third) order model. Experimenting with a new third order rotatable design (TORD) in such a situation would be expensive as the responses observed from the first stage runs would be kept underutilized. In this paper, we propose a method of constructing asymmetric TORD by sequentially augmenting some additional points to the ASORDs without discarding the runs in the first stage. The proposed designs will be more economical to obtain the optimum response as the design in the first stage can be used to fit the second order model and with some additional runs, third order model can be fitted without discarding the initial design.KEYWORDS: Response surface methodology, rotatability, orthogonal transformation, asymmetric, sequential experimentation, third order designs  相似文献   

3.
In the present paper we discuss the situation for a linear growth with correlated structure of the errors and indicate the nature of optimal designs for estimation and prediction problems. We study the intraclass structure of the error distribution. As regards estimation of the slope parameter, we look for robust optimal designs. Here robustness means that optimality should hold for a large variety of correlation parameters. The robust optimal designs for the prediction problem center around a performance measure of the predictors for all design points simultaneously. We have also studied the autocorrelated error structure and found similar results which are reported very briefly.  相似文献   

4.
This paper concerns designed experiments involving observations of orientations following the models of Prentice (1989) and Rivest &Chang (2006). The authors state minimal conditions on the designs for consistent least squares estimation of the matrix parameters in these models. The conditions are expressed in terms of the axes and rotation angles of the design orientations. The authors show that designs satisfying U1 + … + Un = 0 are optimal in the sense of minimizing the estimation error average angular distance. The authors give constructions of optimal n‐point designs when n ≥ 4 and they compare the performance of several designs through approximations and simulation.  相似文献   

5.
Many experiments in the physical and engineering sciences study complex processes in which bias due to model inadequacy dominates random error. A noteworthy example of this situation is the use of computer experiments, in which scientists simulate the phenomenon being studied by a computer code. Computer experiments are deterministic: replicate observations from running the code with the same inputs will be identical. Such high-bias settings demand different techniques for design and prediction. This paper will focus on the experimental design problem introducing a new class of designs called rotation designs. Rotation designs are found by taking an orthogonal starting design D and rotating it to obtain a new design matrix DR=DR, where R is any orthonormal matrix. The new design is still orthogonal for a first-order model. In this paper, we study some of the properties of rotation designs and we present a method to generate rotation designs that have some appealing symmetry properties.  相似文献   

6.
《Statistics》2012,46(6):1357-1385
ABSTRACT

The early stages of many real-life experiments involve a large number of factors among which only a few factors are active. Unfortunately, the optimal full-dimensional designs of those early stages may have bad low-dimensional projections and the experimenters do not know which factors turn out to be important before conducting the experiment. Therefore, designs with good projections are desirable for factor screening. In this regard, significant questions are arising such as whether the optimal full-dimensional designs have good projections onto low dimensions? How experimenters can measure the goodness of a full-dimensional design by focusing on all of its projections?, and are there linkages between the optimality of a full-dimensional design and the optimality of its projections? Through theoretical justifications, this paper tries to provide answers to these interesting questions by investigating the construction of optimal (average) projection designs for screening either nominal or quantitative factors. The main results show that: based on the aberration and orthogonality criteria the full-dimensional design is optimal if and only if it is optimal projection design; the full-dimensional design is optimal via the aberration and orthogonality if and only if it is uniform projection design; there is no guarantee that a uniform full-dimensional design is optimal projection design via any criterion; the projection design is optimal via the aberration, orthogonality and uniformity criteria if it is optimal via any criterion of them; and the saturated orthogonal designs have the same average projection performance.  相似文献   

7.
Abstract

In choice experiments the process of decision-making can be more complex than the proposed by the Multinomial Logit Model (MNL). In these scenarios, models such as the Nested Multinomial Logit Model (NMNL) are often employed to model a more complex decision-making. Understanding the decision-making process is important in some fields such as marketing. Achieving a precise estimation of the models is crucial to the understanding of this process. To do this, optimal experimental designs are required. To construct an optimal design, information matrix is key. A previous research by others has developed the expression for the information matrix of the two-level NMNL model with two nests: Alternatives nest (J alternatives) and No-Choice nest (1 alternative). In this paper, we developed the likelihood function for a two-stage NMNL model for M nests and we present the expression for the information matrix for 2 nests with any amount of alternatives in them. We also show alternative D-optimal designs for No-Choice scenarios with similar relative efficiency but with less complex alternatives which can help to obtain more reliable answers and one application of these designs.  相似文献   

8.
We study the spatial optimal sampling design for covariance parameter estimation. The spatial process is modeled as a Gaussian random field and maximum likelihood (ML) is used to estimate the covariance parameters. We use the log determinant of the inverse Fisher information matrix as the design criterion and run simulations to investigate the relationship between the inverse Fisher information matrix and the covariance matrix of the ML estimates. A simulated annealing algorithm is developed to search for an optimal design among all possible designs on a fine grid. Since the design criterion depends on the unknown parameters, we define relative efficiency of a design and consider minimax and Bayesian criteria to find designs that are robust for a range of parameter values. Simulation results are presented for the Matérn class of covariance functions.  相似文献   

9.
Abstract

We study optimal block designs for comparing a set of test treatments with a control treatment. We provide the class of all E-optimal approximate block designs, which is characterized by simple linear constraints. Based on this characterization, we obtain a class of E-optimal exact designs for unequal block sizes. In the studied model, we provide a statistical interpretation for wide classes of E-optimal designs. Moreover, we show that all approximate A-optimal designs and a large class of A-optimal exact designs for treatment-control comparisons are also R-optimal. This reinforces the observation that A-optimal designs perform well even for rectangular confidence regions.  相似文献   

10.
ABSTRACT

This paper describes some methods of constructing circular neighbor balanced and circular partially neighbor balanced block designs for estimation of direct and neighbor effects of the treatments. A class of circular neighbor balanced block designs with unequal block sizes is also proposed.  相似文献   

11.
ABSTRACT

This paper is devoted to the fixed block effects model analysed with most of the classical designs. First, we find regularities conditions for such designs. Then, we obtain explicitly all the least squares estimators of the model. A particular attention is given to orthogonal blocked designs and their optimal properties.  相似文献   

12.
ABSTRACT

Just as Bayes extensions of the frequentist optimal allocation design have been developed for the two-group case, we provide a Bayes extension of optimal allocation in the three-group case. We use the optimal allocations derived by Jeon and Hu [Optimal adaptive designs for binary response trials with three treatments. Statist Biopharm Res. 2010;2(3):310–318] and estimate success probabilities for each treatment arm using a Bayes estimator. We also introduce a natural lead-in design that allows adaptation to begin as early in the trial as possible. Simulation studies show that the Bayesian adaptive designs simultaneously increase the power and expected number of successfully treated patients compared to the balanced design. And compared to the standard adaptive design, the natural lead-in design introduced in this study produces a higher expected number of successes whilst preserving power.  相似文献   

13.
In experiments with mixtures involving process variables, orthogonal block designs may be used to allow estimation of the parameters of the mixture components independently of estimation of the parameters of the process variables. In the class of orthogonally blocked designs based on pairs of suitably chosen Latin squares, the optimal designs consist primarily of binary blends of the mixture components, regardless of how many ingredients are available for the mixture. This paper considers ways of modifying these optimal designs so that some or all of the runs used in the experiment include a minimum proportion of each mixture ingredient. The designs considered are nearly optimal in the sense that the experimental points are chosen to follow ridges of maxima in the optimality criteria. Specific designs are discussed for mixtures involving three and four components and distinctions are identified for different designs with the same optimality properties. The ideas presented for these specific designs are readily extended to mixtures with q>4 components.  相似文献   

14.
ABSTRACT

For experiments running in field plots or over time, the observations are often correlated due to spatial or serial correlation, which leads to correlated errors in a linear model analyzing the treatment means. Without knowing the exact correlation matrix of the errors, it is not possible to compute the generalized least-squares estimator for the treatment means and use it to construct optimal designs for the experiments. In this paper, we propose to use neighborhoods to model the covariance matrix of the errors, and apply a modified generalized least-squares estimator to construct robust designs for experiments with blocks. A minimax design criterion is investigated, and a simulated annealing algorithm is developed to find robust designs. We have derived several theoretical results, and representative examples are presented.  相似文献   

15.
Some criteria of optimality of a block design with nested rows and columns are considered. The criteria are based on the eigenvalues of the information matrix C or on the eigenvalues of the matrix C with respect to a diagonal matrix R of treatment replications. New constructions of some optimal block designs with nested rows and columns are presented for application to special plant protection experiments.  相似文献   

16.
ABSTRACT

Optimal main effects plans (MEPs) and optimal foldover designs can often be performed as a series of nested optimal designs. Then, if the experiment cannot be completed due to time or budget constraints, the fraction already performed may still be an optimal design. We show that the optimal MEP for 4t factors in 4t + 4 points does not contain the optimal MEP for 4t factors in 4t + 2 points nested within it. In general, the optimal MEP for 4t factors in 4t + 4 points does not contain the optimal MEPs for 4t factors in 4t + 1, 4t + 2, or 4t + 3 points and the optimal MEP for 4t + 1 factors in 4t + 4 points does not contain the optimal MEPs for 4t + 1 factors in 4t + 2 or 4t + 3 points. We also show that the runs in an orthogonal design for 4t factors in 4t + 4 points, and the optimal foldover designs obtained by folding, should be performed in a certain sequence in order to avoid the possibility of a singular X'X matrix.  相似文献   

17.
Global sensitivity indices play important roles in global sensitivity analysis based on ANOVA high-dimensional model representation. However, few effective methods are available for the estimation of the indices when the objective function is a non-parametric model. In this paper, we explore the estimation of global sensitivity indices of non-parametric models. The main result (Theorem 2.1) shows that orthogonal arrays (OAs) are A-optimality designs for the estimation of ΘM,ΘM, the definition of which can be seen in Section 1. Estimators of global sensitivity indices are proposed based on orthogonal arrays and proved to be accurate for small indices. The performance of the estimators is illustrated by a simulation study.  相似文献   

18.
In this paper, we propose a partially A-optimal criterion for block designs where multiple factors are arranged. The number of levels of each factor is assumed to be arbitrary and unequal block sizes are allowed. A sufficient condition is derived for a design to be partially A-optimal among all feasible designs. Then the properties of the selected design and its relation with orthogonal arrays are studied. Methods of constructing designs satisfying the sufficient condition are also given.  相似文献   

19.
ABSTRACT

Recently, researchers have tried to design the T2 chart economically to achieve the minimum possible quality cost; however, when T2 chart is designed, it is important to consider multiple scenarios. This research presents the robust economic designs of the T2 chart where there is more than one scenario. An illustrative example is used to demonstrate the effect of the model parameters on the optimal designs. The genetic algorithm optimization method is employed to obtain the optimal designs. Simulation studies show that the robust economic designs of T2 chart are more effective than traditional economic design in practice.  相似文献   

20.
The use of covariates in block designs is necessary when the covariates cannot be controlled like the blocking factor in the experiment. In this paper, we consider the situation where there is some flexibility for selection in the values of the covariates. The choice of values of the covariates for a given block design attaining minimum variance for estimation of each of the parameters has attracted attention in recent times. Optimum covariate designs in simple set-ups such as completely randomised design (CRD), randomised block design (RBD) and some series of balanced incomplete block design (BIBD) have already been considered. In this paper, optimum covariate designs have been considered for the more complex set-ups of different partially balanced incomplete block (PBIB) designs, which are popular among practitioners. The optimum covariate designs depend much on the methods of construction of the basic PBIB designs. Different combinatorial arrangements and tools such as orthogonal arrays, Hadamard matrices and different kinds of products of matrices viz. Khatri–Rao product, Kronecker product have been conveniently used to construct optimum covariate designs with as many covariates as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号