首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the effect of heteroscedastic regression errors on the size of the Chow test for structural stability. We show that bounds can be placed on the true size of this test in the light of such misspecification, and on the true critical value needed to achieve any desired significance level when using the test under various degrees of heteroscedasticity. These bounds are data-independent, and some cases are tabulated. Examples are given to illustrate the practical application of the critical value bounds.  相似文献   

2.
In this paper, a hypothesis test for heteroscedasticity is proposed in a nonparametric regression model. The test statistic, which uses the residuals from a nonparametric fit of the mean function, is based on an adaptation of the well-known Levene's test. Using the recent theory for analysis of variance when the number of factor levels goes to infinity, the asymptotic distribution of the test statistic is established under the null hypothesis of homocedasticity and under local alternatives. Simulations suggest that the proposed test performs well in several situations, especially when the variance is a nonlinear function of the predictor.  相似文献   

3.
All the usual heteroscedasticity tests in the statistics and econometrics literature are based on raw residuals. Although the raw residuals are heteroscedastic, studentized residuals can still be homoscedastic. In this study, the version of Çelik’s RCEV heteroscedasticity test which is based on studentized residuals is introduced.  相似文献   

4.
A direct parametric test is proposed to detect monotonic and non-monotonic types of heteroscedasticity. After giving brief information about non-monotonic types of heteroscedasticity, the test algorithm is introduced. Proposed test and usual heteroscedasticity tests are compared on monotonic and non-monotonic types of heteroscedasticity in real and artificial data.  相似文献   

5.
It is important to detect the variance heterogeneity in regression models. Heteroscedasticity tests have been well studied in parametric and nonparametric regression models. This paper presents a consistent test for heteroscedasticity for nonlinear semi-parametric regression models with nonparametric variance function based on the kernel method. The properties of the test are investigated through Monte Carlo simulations. The test methods are illustrated with a real example.  相似文献   

6.
Threshold autoregressive models are widely used in time‐series applications. When building or using such a model, it is important to know whether conditional heteroscedasticity exists. The authors propose a nonparametric test of this hypothesis. They develop the large‐sample theory of a test of nonlinear conditional heteroscedasticity adapted to nonlinear autoregressive models and study its finite‐sample properties through simulations. They also provide percentage points for carrying out this test, which is found to have very good power overall.  相似文献   

7.
This paper presents three small sample tests for testing the heteroscedasticity among regression disturbances. The power of these tests are compared with two of the leading tests for this hypothesis, one by Goldfeld and Quandt [5] and the other by Theil [17]. We also provide a heuristic method of selecting the number of middle observations to be deleted for the Goldfeld-Quandt type of tests.  相似文献   

8.
In this article, the problem of interest is testing the conditional heteroscedasticity of Poisson autoregressive model. We construct a non parametric test statistic based on empirical likelihood method. The asymptotic distribution of the proposed statistic is derived and its finite-sample property is examined through Monte Carlo simulations. The simulation results show that the proposed method is good for practical use.  相似文献   

9.
The presence of contamination often called outlier is a very common attribute in data. Among other causes, outliers in a homoscedastic model make the model heteroscedastic. Moreover, outliers distort diagnostic tools for heteroscedasticity such that it may not be correctly identified. In this article, we show how outliers affect heteroscedasticity diagnostics. We then proposed a robust procedure for detecting heteroscedasticity in the presence of outliers by robustifying the non-robust component of the Goldfeld–Quandt (GQ) test. The performance of the proposed procedure is examined using simulation experiment and real data sets. The proposed procedure offers great improvement where the conventional GQ and other procedures fail.  相似文献   

10.
Several estimators are examined for the simple linear regression model under a controlled, experimental situation with multiple observations at each design point. The model is examined under normal and non-normal error distributions and mild heterogeneity of variances across the chosen design points. We consider the ordinary, generalized, and estimated generalized least squares estimators and several examples of M estimators. The asymptotic properties of the M estimator using the Huber ψ are presented under these conditions for the multiple regression model. A simulation study is also presented which indicates that the M estimator possesses strong robustness properties under the presence of both non-normality and mild heteroscedasticity o£ errors. Finally, the M estimates are compared to the least squares estimates in two examples.  相似文献   

11.
Neglecting heteroscedasticity of error terms may imply the wrong identification of a regression model (see appendix). Employment of (heteroscedasticity resistent) White's estimator of covariance matrix of estimates of regression coefficients may lead to the correct decision about the significance of individual explanatory variables under heteroscedasticity. However, White's estimator of covariance matrix was established for least squares (LS)-regression analysis (in the case when error terms are normally distributed, LS- and maximum likelihood (ML)-analysis coincide and hence then White's estimate of covariance matrix is available for ML-regression analysis, tool). To establish White's-type estimate for another estimator of regression coefficients requires Bahadur representation of the estimator in question, under heteroscedasticity of error terms. The derivation of Bahadur representation for other (robust) estimators requires some tools. As the key too proved to be a tight approximation of the empirical distribution function (d.f.) of residuals by the theoretical d.f. of the error terms of the regression model. We need the approximation to be uniform in the argument of d.f. as well as in regression coefficients. The present paper offers this approximation for the situation when the error terms are heteroscedastic.  相似文献   

12.
This study considers a goodness-of-fit test for location-scale time series models with heteroscedasticity, including a broad class of generalized autoregressive conditional heteroscedastic-type models. In financial time series analysis, the correct identification of model innovations is crucial for further inferences in diverse applications such as risk management analysis. To implement a goodness-of-fit test, we employ the residual-based entropy test generated from the residual empirical process. Since this test often shows size distortions and is affected by parameter estimation, its bootstrap version is considered. It is shown that the bootstrap entropy test is weakly consistent, and thereby its usage is justified. A simulation study and data analysis are conducted by way of an illustration.  相似文献   

13.
A main goal of regression is to derive statistical conclusions on the conditional distribution of the output variable Y given the input values x. Two of the most important characteristics of a single distribution are location and scale. Regularised kernel methods (RKMs) – also called support vector machines in a wide sense – are well established to estimate location functions like the conditional median or the conditional mean. We investigate the estimation of scale functions by RKMs when the conditional median is unknown, too. Estimation of scale functions is important, e.g. to estimate the volatility in finance. We consider the median absolute deviation (MAD) and the interquantile range as measures of scale. Our main result shows the consistency of MAD-type RKMs.  相似文献   

14.
In the current study, a new method by the weighting absolute centered external variable (WCEV) was proposed to stabilize heteroscedasticity for butterfly-distributed residuals (BDRs). After giving brief information about heteroscedasticity and BDRs, WCEV was introduced. The WCEV and commonly used variance stabilizing methods are compared on a simple and a multiple regression model. The WCEV was also tested for other type of heteroscedasticity patterns. In addition to heteroscedasticity, other regression assumptions were checked for the WCEV.  相似文献   

15.
16.
Random coefficients may result in heteroscedasticity of observations. For particular situations, where only one observation is available per individual, we derive optimal designs based on the geometry of the design locus.  相似文献   

17.
Recently, Zhang [Simultaneous confidence intervals for several inverse Gaussian populations. Stat Probab Lett. 2014;92:125–131] proposed simultaneous pairwise confidence intervals (SPCIs) based on the fiducial generalized pivotal quantity concept to make inferences about the inverse Gaussian means under heteroscedasticity. In this paper, we propose three new methods for constructing SPCIs to make inferences on the means of several inverse Gaussian distributions when scale parameters and sample sizes are unequal. One of the methods results in a set of classic SPCIs (in the sense that it is not simulation-based inference) and the two others are based on a parametric bootstrap approach. The advantages of our proposed methods over Zhang’s (2014) method are: (i) the simulation results show that the coverage probability of the proposed parametric bootstrap approaches is fairly close to the nominal confidence coefficient while the coverage probability of Zhang’s method is smaller than the nominal confidence coefficient when the number of groups and the variance of groups are large and (ii) the proposed set of classic SPCIs is conservative in contrast to Zhang’s method.  相似文献   

18.
19.
This paper presents a simple and exact test for detecting a monotonic relation between the mean and variance in linear regression through the origin. This test resulted from utilizing uncorrelated Theil-residuals and the Goldfeld-Quandt peak test. A numerical example is provided to elucidate the method. A simulation experiment was performed to compare the empirical power of this test with those of the existing tests.  相似文献   

20.
When cubic smoothing splines are used to estimate the conditional quantile function, thereby balancing fidelity to the data with a smoothness requirement, the resulting curve is the solution to a quadratic program. Using this quadratic characterization and through comparison with the sample conditional quan-tiles, we show strong consistency and asymptotic normality for the quantile smoothing spline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号