共查询到20条相似文献,搜索用时 0 毫秒
1.
With the notion of success in a series of trials extended tD refer to a run of like outcomes, several new distributions are obtained as the result of sampling from an urn without replacement. or with additional replacements., In this context, the hy-pergeometric, negative hypergeometric, logarithmic series, generalized Waring, Polya and inverse Polya distributions are extended and their properties are studied 相似文献
2.
In this paper, distributions of items sampled inversely in clusters are derived. In particular, negative binomial type of distributions are obtained and their properties are studied. A logarithmic series type of distribution is also defined as a limiting form of the obtained generalized negative binomial distribution. 相似文献
3.
Konstantinos Adamidis 《Australian & New Zealand Journal of Statistics》1999,41(2):213-221
An EM algorithm is proposed for computing estimates of parameters of the negative bi-nomial distribution; the algorithm does not involve further iterations in the M-step, in contrast with the one given in Schader & Schmid (1985). The approach can be applied to the corresponding problem in the logarithmic series distribution. The convergence of the proposed scheme is investigated by simulation, the observed Fisher information is derivedand numerical examples based on real data are presented. 相似文献
4.
Marco Barnabani 《统计学通讯:模拟与计算》2017,46(1):331-343
In general, the exact distribution of a convolution of independent gamma random variables is quite complicated and does not admit a closed form. Of all the distributions proposed, the gamma-series representation of Moschopoulos (1985) is relatively simple to implement but for particular combinations of scale and/or shape parameters the computation of the weights of the series can result in complications with too much time consuming to allow a large-scale application. Recently, a compact random parameter representation of the convolution has been proposed by Vellaisamy and Upadhye (2009) and it allows to give an exact interpretation to the weights of the series. They describe an infinite discrete probability distribution. This result suggested to approximate Moschopoulos’s expression looking for an approximating theoretical discrete distribution for the weights of the series. More precisely, we propose a general negative binomial distribution. The result is an “excellent” approximation, fast and simple to implement for any parameter combination. 相似文献
5.
Boris G. Zaslavsky 《Pharmaceutical statistics》2010,9(2):133-141
Bayesian methods are often used to reduce the sample sizes and/or increase the power of clinical trials. The right choice of the prior distribution is a critical step in Bayesian modeling. If the prior not completely specified, historical data may be used to estimate it. In the empirical Bayesian analysis, the resulting prior can be used to produce the posterior distribution. In this paper, we describe a Bayesian Poisson model with a conjugate Gamma prior. The parameters of Gamma distribution are estimated in the empirical Bayesian framework under two estimation schemes. The straightforward numerical search for the maximum likelihood (ML) solution using the marginal negative binomial distribution is unfeasible occasionally. We propose a simplification to the maximization procedure. The Markov Chain Monte Carlo method is used to create a set of Poisson parameters from the historical count data. These Poisson parameters are used to uniquely define the Gamma likelihood function. Easily computable approximation formulae may be used to find the ML estimations for the parameters of gamma distribution. For the sample size calculations, the ML solution is replaced by its upper confidence limit to reflect an incomplete exchangeability of historical trials as opposed to current studies. The exchangeability is measured by the confidence interval for the historical rate of the events. With this prior, the formula for the sample size calculation is completely defined. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
6.
Raluca Vernic 《Australian & New Zealand Journal of Statistics》2020,62(2):186-211
Multivariate distributions are more and more used to model the dependence encountered in many fields. However, classical multivariate distributions can be restrictive by their nature, while Sarmanov's multivariate distribution, by joining different marginals in a flexible and tractable dependence structure, often provides a valuable alternative. In this paper, we introduce some bivariate mixed Sarmanov distributions with the purpose to extend the class of bivariate Sarmanov distributions and to obtain new dependency structures. Special attention is paid to the bivariate mixed Sarmanov distribution with Poisson marginals and, in particular, to the resulting bivariate Sarmanov distributions with negative binomial and with Poisson‐inverse Gaussian marginals; these particular types of mixed distributions have possible applications in, for example modelling bivariate count data. The extension to higher dimensions is also discussed. Moreover, concerning the dependency structure, we also present some correlation formulas. 相似文献
7.
This paper discusses four alternative methods of forming bivariate distributions with compound Poisson marginals. Basic properties of each bivariate version are given. A new bivariate negative binomial distribution, and four bivariate versions of the Sichel distribution, are defined and their properties given. 相似文献
8.
Families of multivariate geometric distributions with flexible correlations can be constructed by applying inverse sampling to a sequence of multinomial trials, and counting outcomes in possibly overlapping categories. Further multivariate families can be obtained by considering other stopping rules, with the possibility of different stopping roles for different counts, A simple characterisation is given for stopping rules which produce joint distributions with marginals having the same form as that of the number of trials. The inverse sampling approach provides a unified treatment of diverse results presented by earlier authors, including Goldberg (1934), Bates and Meyman (1952), Edwards and Gurland (1961), Hawkes (1972), Paulson and Uppulori (1972) and Griffiths and Milne (1987). It also provides a basis for investigating the range of possible correlations for a given set of marginal parameters. In the case of more than two joint geometric or negative binomial variables, a convenient matrix formulation is provided. 相似文献
9.
Several types of multivariate extensions of the inverse Gaussian (IG) distribution and the reciprocal inverse Gaussian (RIG) distribution are proposed. Some of these types are obtained as random-additive-effect models by means of well-known convolution properties of the IG and RIG distributions, and they have one-dimensional IG or RIG marginals. They are used to define a flexible class of multivariate Poisson mixtures. 相似文献
10.
Rao (1963) has formulated a damage model which we call an additive damage model. A suitable damage model, which we call a multiplicative damage model, has been considered by Krishnaji (1970) for income-related problems. In these models, an original observation is subjected to damage, e.g., death or under-reporting, according to a specified probability law. Within the framework of an additive damage model, with a special form of damage, characterizations of the linear and logarithmic exponential families are formulated using regression properties of the damaged part on the undamaged part. The characterizations of the gamma and Pareto distributions that have been found of some use in the theory of income distributions, are obtained as special cases. Similar results are investigated within the framework of the multiplicative damage model. 相似文献
11.
Diego I. Gallardo Yolanda M. Gómez Mário de Castro 《Journal of Statistical Computation and Simulation》2018,88(11):2137-2149
Models for dealing with survival data in the presence of a cured fraction of individuals have attracted the attention of many researchers and practitioners in recent years. In this paper, we propose a cure rate model under the competing risks scenario. For the number of causes that can lead to the event of interest, we assume the polylogarithm distribution. The model is flexible in the sense it encompasses some well-known models, which can be tested using large sample test statistics applied to nested models. Maximum-likelihood estimation based on the EM algorithm and hypothesis testing are investigated. Results of simulation studies designed to gauge the performance of the estimation method and of two test statistics are reported. The methodology is applied in the analysis of a data set. 相似文献
12.
C.G. Khatri 《统计学通讯:理论与方法》2013,42(8):877-893
The paper generalizes the univariate discrete exponential family of distributions to the multivariate situation, and this generalization includes the multivariate power series distributions, the multivariate Lagrangian distributions, and the modified multivariate power-series distributions. This provides a unified approach for the study of these three classes of distributions. We obtain recurrence relations for moments and cumulants, and the maximum likelihood estimation for the discrete exponential family. These results are applied to some multivariate discrete distributions like the Lagrangian Poisson, Lagrangian (negative) multinomial, logarithmic series distributions and multivariate Lagrangian negative binomial distribution. 相似文献
13.
Helge Blaker 《Revue canadienne de statistique》2000,28(4):783-798
The author describes a method for improving standard “exact” confidence intervals in discrete distributions with respect to size while retaining correct level. The binomial, negative binomial, hypergeometric, and Poisson distributions are considered explicitly. Contrary to other existing methods, the author's solution possesses a natural nesting condition: if α < α', the 1 ‐ α' confidence interval is included in the 1 ‐ α interval. Nonparametric confidence intervals for a quantile are also considered. 相似文献
14.
S.H. Ong 《统计学通讯:理论与方法》2013,42(9):163-168
A simple result concerning the canonical expansions of mixed bivariate distributions is considered. This result is then applied to analyze the correlation structures of the Bates-Neyman accident proneness model and its generalization, to derive probability inequalities based on the concept of positive dependence, and to construct a bivariate beta distribution with positive correlation coefficient applicable in computer simulation experiments. The mixture formulation of the conditional distribution of this class of mixed bivariate distributions is used to define and generate first-order autoregressive gamma and negative binomial sequences. 相似文献
15.
A.W. Kepm 《统计学通讯:理论与方法》2013,42(3):783-803
The paper shows that many estimation methods, including ML, moments, even-points, empirical c.f. and minimum chi-square, can be regarded as scoring procedures using weighted sums of the discrepancies between observed and expected frequencies The nature of the weights is investigated for many classes of distributions; the study of approximations to the weights clarifies the relationships between estimation methods, and also leads to useful formulae for initial values for ML iteration. 相似文献
16.
Rao (1963) introduced what we call an additive damage model. In this model, original observation is subjected to damage according to a specified probability law by the survival distribution. In this paper, we consider a bivariate observation with second component subjected to damage. Using the invariance of linearity of regression of the first component on the second under the transition of the second component from the original to the damaged state, we obtain the characterizations of the Poisson, binomial and negative binomial distributions within the framework of the additive damage model. 相似文献
17.
V. Seshadri 《Revue canadienne de statistique》1991,19(4):437-445
Let μ be a positive measure concentrated on R+ generating a natural exponential family (NEF) F with quadratic variance function VF(m), m being the mean parameter of F. It is shown that v(dx) = (γ+x)μ(γ ≥ 0) (γ ≥ 0) generates a NEF G whose variance function is of the form l(m)Δ+cΔ(m), where l(m) is an affine function of m, Δ(m) is a polynomial in m (the mean of G) of degree 2, and c is a constant. The family G turns out to be a finite mixture of F and its length-biased family. We also examine the cases when F has cubic variance function and show that for suitable choices of γ the family G has variance function of the form P(m) + Q(m)m where P, Q are polynomials in m of degree m2 while Δ is an affine function of m. Finally we extend the idea to two dimensions by considering a bivariate Poisson and bivariate gamma mixture distribution. 相似文献
18.
Ramesh C. Gupta 《统计学通讯:理论与方法》2013,42(10):977-991
In this paper we study the minimum variance unbiased estimation in the modified power series distribution introduced by the author (1974a). Necessary and sufficient conditions for the existence of minimum variance unbiased estimate (MVUE) of the parameter based on sufficient statistics are obtained. These results are, then, applied to obtain MVUE of θr (r ≥ 1) for the generalized negative binomial and the decapitated generalized negative binomial distributions (Jain and Consul, 1971). Similar estimates are obtained for the generalized Poisson (Consul and Jain, 1973a) and the generalized logarithmic series distributions (Jain and Gupta, 1973). Several of the well-known results follow trivially from the results obtained here. 相似文献
19.
Michael E. O'Neill Peter C. Thomson Brent C. Jacobs Phil Brain Ruth C. Butler Heather Turner Bernadetha Mitakda 《Australian & New Zealand Journal of Statistics》2004,46(3):349-366
This paper reviews current methods for fitting a range of models to censored seed germination data and recommends adoption of a probability‐based model for the time to germination. It shows that, provided the probability of a seed eventually germinating is not on the boundary, maximum likelihood estimates, their standard errors and the resultant deviances are identical whether only those seeds which have germinated are used or all seeds (including seeds ungerminated at the end of the experiment). The paper recommends analysis of deviance when exploring whether replicate data are consistent with a hypothesis that the underlying distributions are identical, and when assessing whether data from different treatments have underlying distributions with common parameters. The inverse normal distribution, otherwise known as the inverse Gaussian distribution, is discussed, as a natural distribution for the time to germination (including a parameter to measure the lag time to germination). The paper explores some of the properties of this distribution, evaluates the standard errors of the maximum likelihood estimates of the parameters and suggests an accurate approximation to the cumulative distribution function and the median time to germination. Additional material is on the web, at http://www.agric.usyd.edu.au/staff/oneill/ . 相似文献
20.
AbstractIn this article, we have considered three different shared frailty models under the assumption of generalized Pareto Distribution as baseline distribution. Frailty models have been used in the survival analysis to account for the unobserved heterogeneity in an individual risks to disease and death. These three frailty models are with gamma frailty, inverse Gaussian frailty and positive stable frailty. Then we introduce the Bayesian estimation procedure using Markov chain Monte Carlo (MCMC) technique to estimate the parameters. We applied these three models to a kidney infection data and find the best fitted model for kidney infection data. We present a simulation study to compare true value of the parameters with the estimated values. Model comparison is made using Bayesian model selection criterion and a well-fitted model is suggested for the kidney infection data. 相似文献