首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generalized Poisson distribution;containing two

parameters and studied by many researchers; describes the distribution of busy periods under a queueing system and has very interesting properties; The probabilities for successive classes depend upon the previous occurrences; The problem of admissible maximum likelihood estimators for for the parameters Is discussed and a necessary and sufficient condition is derived for which unique admissible maximum likelihood estimators exist; The first; order terms in the biases; variances and the covariance of these maximum likelihood estimators are obtained.  相似文献   

2.
3.
Conditionally autoregressive (CAR) models are often used to analyze a spatial process observed over a lattice or a set of irregular regions. The neighborhoods within a CAR model are generally formed deterministically using the inter-distances or boundaries between the regions. To accommodate directional and inherent anisotropy variation, a new class of spatial models is proposed that adaptively determines neighbors based on a bivariate kernel using the distances and angles between the centroid of the regions. The newly proposed model generalizes the usual CAR model in a sense of accounting for adaptively determined weights. Maximum likelihood estimators are derived and simulation studies are presented for the sampling properties of the estimates on the new model, which is compared to the CAR model. Finally the method is illustrated using a data set on the elevated blood lead levels of children under the age of 72 months observed in Virginia in the year of 2000.  相似文献   

4.
In this note explicit expressions are given for the maximum likelihood estimators of the parameters of the two-parameter exponential distribution, when a doubly censored sample is available.  相似文献   

5.
Cooray and Ananda introduced a two-parameter generalized Half-Normal distribution which is useful for modelling lifetime data, while its maximum likelihood estimators (MLEs) are biased in finite samples. This motivates us to construct nearly unbiased estimators for the unknown parameters of the model. In this paper, we adopt two approaches for bias reduction of the MLEs of the parameters of generalized Half-Normal distribution. The first approach is the analytical methodology suggested by Cox and Snell and the second is based on parametric Bootstrap resampling method. Additionally, the method of moments (MMEs) is used for comparison purposes. The numerical evidence shows that the analytic bias-corrected estimators significantly outperform their bootstrapped-based counterpart for small and moderate samples as well as for MLEs and MMEs. Also, it is apparent from the results that bias- corrected estimates of shape parameter perform better than that of scale parameter. Further, the results show that bias-correction scheme yields nearly unbiased estimates. Finally, six fracture toughness real data sets illustrate the application of our methods.  相似文献   

6.
The number of solutions of the system of the log-likelihood equations for the three-parameter case is still an open problem. Several methods have been developed for finding the solutions. In this article we present a program in Mathematica that can find all the solutions of the system of equations. Furthermore, we examine the case where the global maximum appears at the boundary of the domain of the log-likelihood function and we prove that any consistent estimators appear at the interior with probability tending to one.  相似文献   

7.
Let x be a random variable having the normal distribution with mean μ and variance c2μ2, where c is a known constant. The maximum likelihood estimation of μ when the lowest r1 and the highest r2 sample values censored have been given the asymptotic variance of the maximum likelihood estimator is obtained.  相似文献   

8.
ABSTRACT

The generalized Pareto distribution (GPD) is important in the analysis of extreme values, especially in modeling exceedances over thresholds. Most of the existing methods for estimating the scale and shape parameters of the GPD suffer from theoretical and/or computational problems. A new hybrid estimation method is proposed in this article, which minimizes a goodness-of-fit measure and incorporates some useful likelihood information. Compared with the maximum likelihood method and other leading methods, our new hybrid estimation method retains high efficiency, reduces the estimation bias, and is computation friendly.  相似文献   

9.
Heckman's (1976 Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement 15:475492. [Google Scholar], 1979 Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica 47(1):153161.[Crossref], [Web of Science ®] [Google Scholar]) sample selection model has been employed in many studies of linear and nonlinear regression applications. It is well known that ignoring the sample selectivity may result in inconsistency of the estimator due to the correlation between the statistical errors in the selection and main equations. In this article, we reconsider the maximum likelihood estimator for the panel sample selection model in Keane et al. (1988 Keane, M., Moffitt, R., Runkle, D. (1988). Real wages over the business cycle: Estimating the impact of heterogeneity with micro data. Journal of Political Economy 96:12321266.[Crossref], [Web of Science ®] [Google Scholar]). Since the panel data model contains individual effects, such as fixed or random effects, the likelihood function is more complicated than that of the classical Heckman model. As an alternative to the existing derivation of the likelihood function in the literature, we show that the conditional distribution of the main equation follows a closed skew-normal (CSN) distribution, of which the linear transformation is still a CSN. Although the evaluation of the likelihood function involves high-dimensional integration, we show that the integration can be further simplified into a one-dimensional problem and can be evaluated by the simulated likelihood method. Moreover, we also conduct a Monte Carlo experiment to investigate the finite sample performance of the proposed estimator and find that our estimator provides reliable and quite satisfactory results.  相似文献   

10.
11.
We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called drifted oscillating Brownian motion. For this continuously observed diffusion, the maximum likelihood estimator coincides with a quasi-likelihood estimator with constant diffusion term. We show that this estimator is the limit, as observations become dense in time, of the (quasi)-maximum likelihood estimator based on discrete observations. In long time, the asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results of the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient, or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations.  相似文献   

12.
A discrete probability model always gets truncated during the sampling process and the point of truncation depends upon the sample size. Also, the generalized Poisson distribution cannot be used with full justification when the second parameter is negative. To avoid these problems a truncated generalized Poisson distribution is defined and studied. Estimation of its parameters by moments method, maximum likelihood method and a mixed method are considered. Some examples are given to illustrate the effect on the parameters’ estimates when a non-truncated GPD is used instead of a truncated GPD.  相似文献   

13.
The likelihood ratio test (LRT) for the mean direction in the von Mises distribution is modified for possessing a common asymptotic distribution both for large sample size and for large concentration parameter. The test statistic of the modified LRT is compared with the F distribution but not with the chi-square distribution usually employed, Good performances of the modified LRT are shown by analytical studies and Monte Carlo simulation studies, A notable advantage of the test is that it takes part in the unified likelihood inference procedures including both the marginal MLE and the marginal LRT for the concentration parameter.  相似文献   

14.
15.
DIMITROV, RACHEV and YAKOVLEV ( 1985 ) have obtained the isotonic maximum likelihood estimator for the bimodal failure rate function. The authors considered only the complete failure time data. The generalization of this estimator for the case of censored and tied observations is now proposed.  相似文献   

16.
Let л1 and л2 denote two independent gamma populations G(α1, p) and G(α2, p) respectively. Assume α(i=1,2)are unknown and the common shape parameter p is a known positive integer. Let Yi denote the sample mean based on a random sample of size n from the i-th population. For selecting the population with the larger mean, we consider, the natural rule according to which the population corresponding to the larger Yi is selected. We consider? in this paper, the estimation of M, the mean of the selected population. It is shown that the natural estimator is positively biased. We obtain the uniformly minimum variance unbiased estimator(UMVE) of M. We also consider certain subclasses of estikmators of the form c1x(1) +c1x(2) and derive admissible estimators in these classes. The minimazity of certain estimators of interest is investigated. Itis shown that p(p+1)-1x(1) is minimax and dominates the UMVUE. Also UMVUE is not minimax.  相似文献   

17.
A log-linear model is defined for multiway contingency tables with negative multinomial frequency counts. The maximum likelihood estimator of the model parameters and the estimator covariance matrix is given. The likelihood ratio test for the general log-linear hypothesis also is presented.  相似文献   

18.
We consider the problem of maximum likelihood estimation of the parameters of the bxvariate binomial distribution, In the statistical literature, this problem is solved when the observed sample is available in the form of a 2x2 contingency table, that is, with all four cell fre quencies given,, The present paper provides a solution for this problem when only the marginal totals of the 2x2 table are observed, which is the natural set-up in a bivariate sampling situation.. Thus, based on a sample [(Xi,Yi:), i = 1, …, k] from a bivariate binomial population, we derive maximum likelihood (ML) estimators for the two marginal parameters p1,p2: and the covariance parameter p11: It. turns out that the ML estimators for P1: and P2: are expressed explicitly in terms of the sample values, whereas the ML estimator for p11: can only be obtained numerically by iterative methods Two nu merical illustrations are also presented  相似文献   

19.
In this paper, we investigate the maximum likelihood estimation for the reflected Ornstein-Uhlenbeck (ROU) processes based on continuous observations. Both the cases with one-sided barrier and two-sided barriers are considered. We derive the explicit formulas for the estimators, and then prove their strong consistency and asymptotic normality. Moreover, the bias and mean square errors are represented in terms of the solutions to some PDEs with homogeneous Neumann boundary conditions. We also illustrate the asymptotic behavior of the estimators through a simulation study.  相似文献   

20.
In this article, we investigate various properties and methods of estimation of the Weighted Exponential distribution. Although, our main focus is on estimation (from both frequentist and Bayesian point of view) yet, the stochastic ordering, the Bonferroni and the Lorenz curves, various entropies and order statistics are derived first time for the said distribution. Different types of loss functions are considered for Bayesian estimation. Furthermore, the Bayes estimators and their respective posterior risks are computed and compared using Gibbs sampling. The different reliability characteristics including hazard function, stress and strength analysis, and mean residual life function are also derived. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and two real data sets have been analysed for illustrative purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号