首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
It is indicated by some researchers in the literature that it might be difficult to exactly determine the minimum sample size for the estimation of a binomial parameter with prescribed margin of error and confidence level. In this paper, we investigate such a very old but also extremely important problem and demonstrate that the difficulty for obtaining the exact solution is not insurmountable. Unlike the classical approximate sample size method based on the central limit theorem, we develop a new approach for computing the minimum sample size that does not require any approximation. Moreover, our approach overcomes the conservatism of existing rigorous sample size methods derived from Bernoulli's theorem or Chernoff-Hoeffding bound.Our computational machinery consists of two essential ingredients. First, we prove that the minimum of coverage probability with respect to a binomial parameter bounded in an interval is attained at a discrete set of finite many values of the binomial parameter. This allows for reducing infinite many evaluations of coverage probability to finite many evaluations. Second, a recursive bounding technique is developed to further improve the efficiency of computation.  相似文献   

2.
This article introduces mean-minimum (MM) exact confidence intervals for a binomial probability. These intervals guarantee that both the mean and the minimum frequentist coverage never drop below specified values. For example, an MM 95[93]% interval has mean coverage at least 95% and minimum coverage at least 93%. In the conventional sense, such an interval can be viewed as an exact 93% interval that has mean coverage at least 95% or it can be viewed as an approximate 95% interval that has minimum coverage at least 93%. Graphical and numerical summaries of coverage and expected length suggest that the Blaker-based MM exact interval is an attractive alternative to, even an improvement over, commonly recommended approximate and exact intervals, including the Agresti–Coull approximate interval, the Clopper–Pearson (CP) exact interval, and the more recently recommended CP-, Blaker-, and Sterne-based mean-coverage-adjusted approximate intervals.  相似文献   

3.
For a confidence interval (L(X),U(X)) of a parameter θ in one-parameter discrete distributions, the coverage probability is a variable function of θ. The confidence coefficient is the infimum of the coverage probabilities, inf  θ P θ (θ∈(L(X),U(X))). Since we do not know which point in the parameter space the infimum coverage probability occurs at, the exact confidence coefficients are unknown. Beside confidence coefficients, evaluation of a confidence intervals can be based on the average coverage probability. Usually, the exact average probability is also unknown and it was approximated by taking the mean of the coverage probabilities at some randomly chosen points in the parameter space. In this article, methodologies for computing the exact average coverage probabilities as well as the exact confidence coefficients of confidence intervals for one-parameter discrete distributions are proposed. With these methodologies, both exact values can be derived.  相似文献   

4.
Despite the simplicity of the Bernoulli process, developing good confidence interval procedures for its parameter—the probability of success p—is deceptively difficult. The binary data yield a discrete number of successes from a discrete number of trials, n. This discreteness results in actual coverage probabilities that oscillate with the n for fixed values of p (and with p for fixed n). Moreover, this oscillation necessitates a large sample size to guarantee a good coverage probability when p is close to 0 or 1.

It is well known that the Wilson procedure is superior to many existing procedures because it is less sensitive to p than any other procedures, therefore it is less costly. The procedures proposed in this article work as well as the Wilson procedure when 0.1 ≤p ≤ 0.9, and are even less sensitive (i.e., more robust) than the Wilson procedure when p is close to 0 or 1. Specifically, when the nominal coverage probability is 0.95, the Wilson procedure requires a sample size 1, 021 to guarantee that the coverage probabilities stay above 0.92 for any 0.001 ≤ min {p, 1 ?p} <0.01. By contrast, our procedures guarantee the same coverage probabilities but only need a sample size 177 without increasing either the expected interval width or the standard deviation of the interval width.  相似文献   

5.
This paper considers a linear regression model with regression parameter vector β. The parameter of interest is θ= aTβ where a is specified. When, as a first step, a data‐based variable selection (e.g. minimum Akaike information criterion) is used to select a model, it is common statistical practice to then carry out inference about θ, using the same data, based on the (false) assumption that the selected model had been provided a priori. The paper considers a confidence interval for θ with nominal coverage 1 ‐ α constructed on this (false) assumption, and calls this the naive 1 ‐ α confidence interval. The minimum coverage probability of this confidence interval can be calculated for simple variable selection procedures involving only a single variable. However, the kinds of variable selection procedures used in practice are typically much more complicated. For the real‐life data presented in this paper, there are 20 variables each of which is to be either included or not, leading to 220 different models. The coverage probability at any given value of the parameters provides an upper bound on the minimum coverage probability of the naive confidence interval. This paper derives a new Monte Carlo simulation estimator of the coverage probability, which uses conditioning for variance reduction. For these real‐life data, the gain in efficiency of this Monte Carlo simulation due to conditioning ranged from 2 to 6. The paper also presents a simple one‐dimensional search strategy for parameter values at which the coverage probability is relatively small. For these real‐life data, this search leads to parameter values for which the coverage probability of the naive 0.95 confidence interval is 0.79 for variable selection using the Akaike information criterion and 0.70 for variable selection using Bayes information criterion, showing that these confidence intervals are completely inadequate.  相似文献   

6.
Guogen Shan 《Statistics》2018,52(5):1086-1095
In addition to point estimate for the probability of response in a two-stage design (e.g. Simon's two-stage design for binary endpoints), confidence limits should be computed and reported. The current method of inverting the p-value function to compute the confidence interval does not guarantee coverage probability in a two-stage setting. The existing exact approach to calculate one-sided limits is based on the overall number of responses to order the sample space. This approach could be conservative because many sample points have the same limits. We propose a new exact one-sided interval based on p-value for the sample space ordering. Exact intervals are computed by using binomial distributions directly, instead of a normal approximation. Both exact intervals preserve the nominal confidence level. The proposed exact interval based on the p-value generally performs better than the other exact interval with regard to expected length and simple average length of confidence intervals.  相似文献   

7.
A confidence interval for the generalized variance of a matrix normal distribution with unknown mean is constructed which improves on the usual minimum size (i.e., minimum length or minimum ratio of endpoints) interval based on the sample generalized variance alone in terms of both coverage probability and size. The method is similar to the univariate case treated by Goutis and Casella (Ann. Statist. 19 (1991) 2015–2031).  相似文献   

8.
We study confidence intervals of prescribed width for the lo-cation parameter of an exponential distribution. Asymptotic expan-sions up to terms tending to zero are obtained for the coverage probability and expected sample size. The limiting distribution of the sample size is given from which an asymptotic expression for the variance of the sample size is deduced. Sequential procedures with non-asymptotic coverage probability are also investigated  相似文献   

9.
Abstract

Two recurrence relations with respect to sample size are given concerning the joint distribution of skewness and kurtosis of random observations from a normal population: one between the probability density functions and the other between the product moments. As a consequence, the latter yields a recurrence formula for the moments of sample kurtosis. The exact moments of Jarque-Bera statistic is also given.  相似文献   

10.
Abstract

Negative hypergeometric distribution arises as a waiting time distribution when we sample without replacement from a finite population. It has applications in many areas such as inspection sampling and estimation of wildlife populations. However, as is well known, the negative hypergeometric distribution is over-dispersed in the sense that its variance is greater than the mean. To make it more flexible and versatile, we propose a modified version of negative hypergeometric distribution called COM-Negative Hypergeometric distribution (COM-NH) by introducing a shape parameter as in the COM-Poisson and COMP-Binomial distributions. It is shown that under some limiting conditions, COM-NH approaches to a distribution that we call the COM-Negative binomial (COMP-NB), which in turn, approaches to the COM Poisson distribution. For the proposed model, we investigate the dispersion characteristics and shape of the probability mass function for different combinations of parameters. We also develop statistical inference for this model including parameter estimation and hypothesis tests. In particular, we investigate some properties such as bias, MSE, and coverage probabilities of the maximum likelihood estimators for its parameters by Monte Carlo simulation and likelihood ratio test to assess shape parameter of the underlying model. We present illustrative data to provide discussion.  相似文献   

11.
ABSTRACT

The performances of six confidence intervals for estimating the arithmetic mean of a lognormal distribution are compared using simulated data. The first interval considered is based on an exact method and is recommended in U.S. EPA guidance documents for calculating upper confidence limits for contamination data. Two intervals are based on asymptotic properties due to the Central Limit Theorem, and the other three are based on transformations and maximum likelihood estimation. The effects of departures from lognormality on the performance of these intervals are also investigated. The gamma distribution is considered to represent departures from the lognormal distribution. The average width and coverage of each confidence interval is reported for varying mean, variance, and sample size. In the lognormal case, the exact interval gives good coverage, but for small sample sizes and large variances the confidence intervals are too wide. In these cases, an approximation that incorporates sampling variability of the sample variance tends to perform better. When the underlying distribution is a gamma distribution, the intervals based upon the Central Limit Theorem tend to perform better than those based upon lognormal assumptions.  相似文献   

12.
ABSTRACT

In practice, it is often not possible to find an appropriate family of distributions which can be used for fitting the sample distribution with high precision. In these cases, it seems to be opportune to search for the best approximation by a family of distributions instead of an exact fit. In this paper, we consider the Anderson–Darling statistic with plugged-in minimum distance estimator for the parameter vector. We prove asymptotic normality of the Anderson–Darling statistic which is used for a test of goodness of approximation. Moreover, we introduce a measure of discrepancy between the sample distribution and the model class.  相似文献   

13.
ABSTRACT

When the editors of Basic and Applied Social Psychology effectively banned the use of null hypothesis significance testing (NHST) from articles published in their journal, it set off a fire-storm of discussions both supporting the decision and defending the utility of NHST in scientific research. At the heart of NHST is the p-value which is the probability of obtaining an effect equal to or more extreme than the one observed in the sample data, given the null hypothesis and other model assumptions. Although this is conceptually different from the probability of the null hypothesis being true, given the sample, p-values nonetheless can provide evidential information, toward making an inference about a parameter. Applying a 10,000-case simulation described in this article, the authors found that p-values’ inferential signals to either reject or not reject a null hypothesis about the mean (α?=?0.05) were consistent for almost 70% of the cases with the parameter’s true location for the sampled-from population. Success increases if a hybrid decision criterion, minimum effect size plus p-value (MESP), is used. Here, rejecting the null also requires the difference of the observed statistic from the exact null to be meaningfully large or practically significant, in the researcher’s judgment and experience. The simulation compares performances of several methods: from p-value and/or effect size-based, to confidence-interval based, under various conditions of true location of the mean, test power, and comparative sizes of the meaningful distance and population variability. For any inference procedure that outputs a binary indicator, like flagging whether a p-value is significant, the output of one single experiment is not sufficient evidence for a definitive conclusion. Yet, if a tool like MESP generates a relatively reliable signal and is used knowledgeably as part of a research process, it can provide useful information.  相似文献   

14.
Consider the problem of finding an upper 1 –α confidence limit for a scalar parameter of interest ø in the presence of a nuisance parameter vector θ when the data are discrete. Approximate upper limits T may be found by approximating the relevant unknown finite sample distribution by its limiting distribution. Such approximate upper limits typically have coverage probabilities below, sometimes far below, 1 –α for certain values of (θ, ø). This paper remedies that defect by shifting the possible values t of T so that they are as small as possible subject both to the minimum coverage probability being greater than or equal to 1 –α, and to the shifted values being in the same order as the unshifted ts. The resulting upper limits are called ‘tight’. Under very weak and easily checked regularity conditions, a formula is developed for the tight upper limits.  相似文献   

15.
Abstract

The standard method of obtaining a two-sided confidence interval for the Poisson mean produces an interval which is exact but can be shortened without violating the minimum coverage requirement. We classify the intervals proposed as alternatives to the standard method interval. We carry out the classification using two desirable properties of two-sided confidence intervals.  相似文献   

16.
Motivated by a study on comparing sensitivities and specificities of two diagnostic tests in a paired design when the sample size is small, we first derived an Edgeworth expansion for the studentized difference between two binomial proportions of paired data. The Edgeworth expansion can help us understand why the usual Wald interval for the difference has poor coverage performance in the small sample size. Based on the Edgeworth expansion, we then derived a transformation based confidence interval for the difference. The new interval removes the skewness in the Edgeworth expansion; the new interval is easy to compute, and its coverage probability converges to the nominal level at a rate of O(n−1/2). Numerical results indicate that the new interval has the average coverage probability that is very close to the nominal level on average even for sample sizes as small as 10. Numerical results also indicate this new interval has better average coverage accuracy than the best existing intervals in finite sample sizes.  相似文献   

17.
ABSTRACT

This article argues that researchers do not need to completely abandon the p-value, the best-known significance index, but should instead stop using significance levels that do not depend on sample sizes. A testing procedure is developed using a mixture of frequentist and Bayesian tools, with a significance level that is a function of sample size, obtained from a generalized form of the Neyman–Pearson Lemma that minimizes a linear combination of α, the probability of rejecting a true null hypothesis, and β, the probability of failing to reject a false null, instead of fixing α and minimizing β. The resulting hypothesis tests do not violate the Likelihood Principle and do not require any constraints on the dimensionalities of the sample space and parameter space. The procedure includes an ordering of the entire sample space and uses predictive probability (density) functions, allowing for testing of both simple and compound hypotheses. Accessible examples are presented to highlight specific characteristics of the new tests.  相似文献   

18.
In the classical setting of the change-point problem, the maximum-likelihood estimator and the traditional confidence region for the change-point parameter are considered. It is shown that the probability of the correct decision, the coverage probability and the expected size of the confidence set converge exponentially fast as the sample size increases to infinity. For this purpose, the tail probabilities of the first passage times are studied. General inequalities are established, and exact asymptotics are obtained for the case of Bernoulli distributions. A closed asymptotic form for the expected size of the confidence set is derived for this case via the conditional distribution of the first passage times.  相似文献   

19.
For the assessment of agreement using probability criteria, we obtain an exact test, and for sample sizes exceeding 30, we give a bootstrap-tt test that is remarkably accurate. We show that for assessing agreement, the total deviation index approach of Lin [2000. Total deviation index for measuring individual agreement with applications in laboratory performance and bioequivalence. Statist. Med. 19, 255–270] is not consistent and may not preserve its asymptotic nominal level, and that the coverage probability approach of Lin et al. [2002. Statistical methods in assessing agreement: models, issues and tools. J. Amer. Statist. Assoc. 97, 257–270] is overly conservative for moderate sample sizes. We also show that the nearly unbiased test of Wang and Hwang [2001. A nearly unbiased test for individual bioequivalence problems using probability criteria. J. Statist. Plann. Inference 99, 41–58] may be liberal for large sample sizes, and suggest a minor modification that gives numerically equivalent approximation to the exact test for sample sizes 30 or less. We present a simple and accurate sample size formula for planning studies on assessing agreement, and illustrate our methodology with a real data set from the literature.  相似文献   

20.
ABSTRACT

In this paper, under Type-I progressive hybrid censoring sample, we obtain maximum likelihood estimator of unknown parameter when the parent distribution belongs to proportional hazard rate family. We derive the conditional probability density function of the maximum likelihood estimator using moment-generating function technique. The exact confidence interval is obtained and compared by conducting a Monte Carlo simulation study for burr Type XII distribution. Finally, we obtain the Bayes and posterior regret gamma minimax estimates of the parameter under a precautionary loss function with precautionary index k = 2 and compare their behavior via a Monte Carlo simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号