首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a general family of contingent response models. These models have ternary outcomes constructed from two Bernoulli outcomes, where one outcome is only observed if the other outcome is positive. This family is represented in a canonical form which yields general results for its Fisher information. A bivariate extreme value distribution illustrates the model and optimal design results. To provide a motivating context, we call the two binary events that compose the contingent responses toxicity and efficacy. Efficacy or lack thereof is assumed only to be observable in the absence of toxicity, resulting in the ternary response (toxicity, efficacy without toxicity, neither efficacy nor toxicity). The rate of toxicity, and the rate of efficacy conditional on no toxicity, are assumed to increase with dose. While optimal designs for contingent response models are numerically found, limiting optimal designs can be expressed in closed forms. In particular, in the family of four parameter bivariate location-scale models we study, as the marginal probability functions of toxicity and no efficacy diverge, limiting D optimal designs are shown to consist of a mixture of the D optimal designs for each failure (toxicity and no efficacy) univariately. Limiting designs are also obtained for the case of equal scale parameters.  相似文献   

2.
We suggest a generalized spatial system GMM (SGMM) estimation for short dynamic panel data models with spatial errors and fixed effects when n is large and T is fixed (usually small). Monte Carlo studies are conducted to evaluate the finite sample properties with the quasi-maximum likelihood estimation (QMLE). The results show that, QMLE, with a proper approximation for initial observation, performs better than SGMM in general cases. However, it performs poorly when spatial dependence is large. QMLE and SGMM perform better for different parameters when there is unknown heteroscedasticity in the disturbances and the data are highly persistent. Both estimates are not sensitive to the treatment of initial values. Estimation of the spatial autoregressive parameter is generally biased when either the data are highly persistent or spatial dependence is large. Choices of spatial weights matrices and the sign of spatial dependence do affect the performance of the estimates, especially in the case of the heteroscedastic disturbance. We also give empirical guidelines for the model.  相似文献   

3.
内容提要:向量自回归模型是多元时间序列分析中最常用的方法之一。在建立模型的过程中模型选择是非常重要的一个环节,如果候选模型不是很多时,可以通过比较每个模型的准则值如AIC、AICc、BIC或HQ进行模型选择。可是,当存在大量候选模型时,我们无法一一比较每个模型的准则值。为了解决这个问题,本文提出一个基于吉伯斯样本生成器的向量自回归模型选择方法,结果表明应用该方法能够从大量候选模型中准确、高效地确认准则值最小的模型。  相似文献   

4.
Markov random field models incorporate terms representing local statistical dependence among variables in a discrete-index random field. Traditional parameterizations for models based on one-parameter exponential family conditional distributions contain components that would appear to reflect large-scale and small-scale model behaviors, and it is natural to attempt to match these structures with large-scale and small-scale patterns in a set of data. Traditional manners of parameterizing Markov random field models do not allow such correspondence, however. We propose an alternative centered parameterization that, while not leading to different models, allows a correspondence between model structures and data structures to be successfully accomplished. The ability to make these connections is important when incorporating covariate information into a model or if a sequence of models is fit over time to investigate and interpret possible changes in data structure. We demonstrate the improved interpretation that results from use of centered parameterizations. Centered parameterizations also lend themselves to computation of an interpretable decomposition of mean squared error, and this is demonstrated both analytically and through a simulated example. A breakdown in model behavior occurs even with centered parameterizations if dependence parameters in Markov random field models are allowed to become too large. This phenomenon is discussed and illustrated using an auto-logistic model.  相似文献   

5.
Summary. The classical approach to statistical analysis is usually based upon finding values for model parameters that maximize the likelihood function. Model choice in this context is often also based on the likelihood function, but with the addition of a penalty term for the number of parameters. Though models may be compared pairwise by using likelihood ratio tests for example, various criteria such as the Akaike information criterion have been proposed as alternatives when multiple models need to be compared. In practical terms, the classical approach to model selection usually involves maximizing the likelihood function associated with each competing model and then calculating the corresponding criteria value(s). However, when large numbers of models are possible, this quickly becomes infeasible unless a method that simultaneously maximizes over both parameter and model space is available. We propose an extension to the traditional simulated annealing algorithm that allows for moves that not only change parameter values but also move between competing models. This transdimensional simulated annealing algorithm can therefore be used to locate models and parameters that minimize criteria such as the Akaike information criterion, but within a single algorithm, removing the need for large numbers of simulations to be run. We discuss the implementation of the transdimensional simulated annealing algorithm and use simulation studies to examine its performance in realistically complex modelling situations. We illustrate our ideas with a pedagogic example based on the analysis of an autoregressive time series and two more detailed examples: one on variable selection for logistic regression and the other on model selection for the analysis of integrated recapture–recovery data.  相似文献   

6.
Markov random fields (MRFs) express spatial dependence through conditional distributions, although their stochastic behavior is defined by their joint distribution. These joint distributions are typically difficult to obtain in closed form, the problem being a normalizing constant that is a function of unknown parameters. The Gaussian MRF (or conditional autoregressive model) is one case where the normalizing constant is available in closed form; however, when sample sizes are moderate to large (thousands to tens of thousands), and beyond, its computation can be problematic. Because the conditional autoregressive (CAR) model is often used for spatial-data modeling, we develop likelihood-inference methodology for this model in situations where the sample size is too large for its normalizing constant to be computed directly. In particular, we use simulation methodology to obtain maximum likelihood estimators of mean, variance, and spatial-depencence parameters (including their asymptotic variances and covariances) of CAR models.  相似文献   

7.
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.  相似文献   

8.
Binary dynamic fixed and mixed logit models are extensively studied in the literature. These models are developed to examine the effects of certain fixed covariates through a parametric regression function as a part of the models. However, there are situations where one may like to consider more covariates in the model but their direct effect is not of interest. In this paper we propose a generalization of the existing binary dynamic logit (BDL) models to the semi-parametric longitudinal setup to address this issue of additional covariates. The regression function involved in such a semi-parametric BDL model contains (i) a parametric linear regression function in some primary covariates, and (ii) a non-parametric function in certain secondary covariates. We use a simple semi-parametric conditional quasi-likelihood approach for consistent estimation of the non-parametric function, and a semi-parametric likelihood approach for the joint estimation of the main regression and dynamic dependence parameters of the model. The finite sample performance of the estimation approaches is examined through a simulation study. The asymptotic properties of the estimators are also discussed. The proposed model and the estimation approaches are illustrated by reanalysing a longitudinal infectious disease data.  相似文献   

9.
It has been found that, for a variety of probability distributions, there is a surprising linear relation between mode, mean, and median. In this article, the relation between mode, mean, and median regression functions is assumed to follow a simple parametric model. We propose a semiparametric conditional mode (mode regression) estimation for an unknown (unimodal) conditional distribution function in the context of regression model, so that any m-step-ahead mean and median forecasts can then be substituted into the resultant model to deliver m-step-ahead mode prediction. In the semiparametric model, Least Squared Estimator (LSEs) for the model parameters and the simultaneous estimation of the unknown mean and median regression functions by the local linear kernel method are combined to infer about the parametric and nonparametric components of the proposed model. The asymptotic normality of these estimators is derived, and the asymptotic distribution of the parameter estimates is also given and is shown to follow usual parametric rates in spite of the presence of the nonparametric component in the model. These results are applied to obtain a data-based test for the dependence of mode regression over mean and median regression under a regression model.  相似文献   

10.
A semiparametric method is developed to estimate the dependence parameter and the joint distribution of the error term in the multivariate linear regression model. The nonparametric part of the method treats the marginal distributions of the error term as unknown, and estimates them using suitable empirical distribution functions. Then the dependence parameter is estimated by either maximizing a pseudolikelihood or solving an estimating equation. It is shown that this estimator is asymptotically normal, and a consistent estimator of its large sample variance is given. A simulation study shows that the proposed semiparametric method is better than the parametric ones available when the error distribution is unknown, which is almost always the case in practice. It turns out that there is no loss of asymptotic efficiency as a result of the estimation of regression parameters. An empirical example on portfolio management is used to illustrate the method.  相似文献   

11.
Mis-specification analyses of gamma and Wiener degradation processes   总被引:2,自引:0,他引:2  
Degradation models are widely used these days to assess the lifetime information of highly reliable products if there exist some quality characteristics (QC) whose degradation over time can be related to the reliability of the product. In this study, motivated by a laser data, we investigate the mis-specification effect on the prediction of product's MTTF (mean-time-to-failure) when the degradation model is wrongly fitted. More specifically, we derive an expression for the asymptotic distribution of quasi-MLE (QMLE) of the product's MTTF when the true model comes from gamma degradation process, but is wrongly assumed to be Wiener degradation process. The penalty for the model mis-specification can then be addressed sequentially. The result demonstrates that the effect on the accuracy of the product's MTTF prediction strongly depends on the ratio of critical value to the scale parameter of the gamma degradation process. The effects on the precision of the product's MTTF prediction are observed to be serious when the shape and scale parameters of the gamma degradation process are large. We then carry out a simulation study to evaluate the penalty of the model mis-specification, using which we show that the simulation results are quite close to the theoretical ones even when the sample size and termination time are not large. For the reverse mis-specification problem, i.e., when the true degradation is a Wiener process, but is wrongly assumed to be a gamma degradation process, we carry out a Monte Carlo simulation study to examine the effect of the corresponding model mis-specification. The obtained results reveal that the effect of this model mis-specification is negligible.  相似文献   

12.
13.
In many studies a large number of variables is measured and the identification of relevant variables influencing an outcome is an important task. For variable selection several procedures are available. However, focusing on one model only neglects that there usually exist other equally appropriate models. Bayesian or frequentist model averaging approaches have been proposed to improve the development of a predictor. With a larger number of variables (say more than ten variables) the resulting class of models can be very large. For Bayesian model averaging Occam’s window is a popular approach to reduce the model space. As this approach may not eliminate any variables, a variable screening step was proposed for a frequentist model averaging procedure. Based on the results of selected models in bootstrap samples, variables are eliminated before deriving a model averaging predictor. As a simple alternative screening procedure backward elimination can be used. Through two examples and by means of simulation we investigate some properties of the screening step. In the simulation study we consider situations with fifteen and 25 variables, respectively, of which seven have an influence on the outcome. With the screening step most of the uninfluential variables will be eliminated, but also some variables with a weak effect. Variable screening leads to more applicable models without eliminating models, which are more strongly supported by the data. Furthermore, we give recommendations for important parameters of the screening step.  相似文献   

14.
The frailty approach is commonly used in reliability theory and survival analysis to model the dependence between lifetimes of individuals or components subject to common risk factors; according to this model the frailty (an unobservable random vector that describes environmental conditions) acts simultaneously on the hazard functions of the lifetimes. Some interesting conditions for stochastic comparisons between random vectors defined in accordance with these models have been described in the literature; in particular, comparisons between frailty models have been studied by assuming independence for the baseline survival functions and the corresponding environmental parameters. In this paper, a generalization of these models is developed, which assumes conditional dependence between the components of the random vector, and some conditions for stochastic comparisons are provided. Some examples of frailty models satisfying these conditions are also described.  相似文献   

15.
Models with large parameter (i.e., hundreds or thousands of parameters) often behave as if they depend upon only a few parameters, with the rest having comparatively little influence. One challenge of sensitivity analysis with such models is screening parameters to identify the influential ones, and then characterizing their influences.

Large models often require significant computing resources to evaluate their output, and so a good screening mechanism should be efficient: it should minimize the number of times a model must be exercised. This paper describes an efficient procedure to perform sensitivity analysis on deterministic models with specified ranges or probability distributions for each parameter.

It is based on repeated exercising of the model, which can be treated as a black box. Statistical checks can ensure that the screening identified parameters that account for the bulk of the model variation. Subsequent sensitivity analysis can use the screening information to reduce the investment required to characterize the influence of influential and other parameters.

The procedure exploits simplifications in the dependence of a model output on model inputs. It works best where a small number of parameters are much more influential than all the rest. The method is much more sensitive to the number of influential parameters than to the total number of parameters. It is most effective when linear or quadratic effects dominate higher order effects and complex interactions.

The paper presents a set of M athematica functions that can be used to create a variety of types of experimental designs useful for sensitivity analysis, including simple random, latin hypercube and fractional factorial sampling. Each sampling method can use discretization, folding, grouping and replication to create composite designs. These techniques have beencombined in a composite approach called Iterated Fractional Factorial Design (IFFD).

The procedure is applied to model of nuclear fuel waste disposal, and to simplified example models to demonstrate the concepts involved.  相似文献   

16.
Summary. In many biomedical studies, covariates are subject to measurement error. Although it is well known that the regression coefficients estimators can be substantially biased if the measurement error is not accommodated, there has been little study of the effect of covariate measurement error on the estimation of the dependence between bivariate failure times. We show that the dependence parameter estimator in the Clayton–Oakes model can be considerably biased if the measurement error in the covariate is not accommodated. In contrast with the typical bias towards the null for marginal regression coefficients, the dependence parameter can be biased in either direction. We introduce a bias reduction technique for the bivariate survival function in copula models while assuming an additive measurement error model and replicated measurement for the covariates, and we study the large and small sample properties of the dependence parameter estimator proposed.  相似文献   

17.
Summary. Models for multiple-test screening data generally require the assumption that the tests are independent conditional on disease state. This assumption may be unreasonable, especially when the biological basis of the tests is the same. We propose a model that allows for correlation between two diagnostic test results. Since models that incorporate test correlation involve more parameters than can be estimated with the available data, posterior inferences will depend more heavily on prior distributions, even with large sample sizes. If we have reasonably accurate information about one of the two screening tests (perhaps the standard currently used test) or the prevalences of the populations tested, accurate inferences about all the parameters, including the test correlation, are possible. We present a model for evaluating dependent diagnostic tests and analyse real and simulated data sets. Our analysis shows that, when the tests are correlated, a model that assumes conditional independence can perform very poorly. We recommend that, if the tests are only moderately accurate and measure the same biological responses, researchers use the dependence model for their analyses.  相似文献   

18.
A robust Bayesian design is presented for a single-arm phase II trial with an early stopping rule to monitor a time to event endpoint. The assumed model is a piecewise exponential distribution with non-informative gamma priors on the hazard parameters in subintervals of a fixed follow up interval. As an additional comparator, we also define and evaluate a version of the design based on an assumed Weibull distribution. Except for the assumed models, the piecewise exponential and Weibull model based designs are identical to an established design that assumes an exponential event time distribution with an inverse gamma prior on the mean event time. The three designs are compared by simulation under several log-logistic and Weibull distributions having different shape parameters, and for different monitoring schedules. The simulations show that, compared to the exponential inverse gamma model based design, the piecewise exponential design has substantially better performance, with much higher probabilities of correctly stopping the trial early, and shorter and less variable trial duration, when the assumed median event time is unacceptably low. Compared to the Weibull model based design, the piecewise exponential design does a much better job of maintaining small incorrect stopping probabilities in cases where the true median survival time is desirably large.  相似文献   

19.
Likelihood-based marginalized models using random effects have become popular for analyzing longitudinal categorical data. These models permit direct interpretation of marginal mean parameters and characterize the serial dependence of longitudinal outcomes using random effects [12,22]. In this paper, we propose model that expands the use of previous models to accommodate longitudinal nominal data. Random effects using a new covariance matrix with a Kronecker product composition are used to explain serial and categorical dependence. The Quasi-Newton algorithm is developed for estimation. These proposed methods are illustrated with a real data set and compared with other standard methods.  相似文献   

20.
In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号