首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, recurrence relations from a general class of doubly truncated continuous distributions which are satisfied by single as well as product moments of order statistics are obtained. Recurrence relations from doubly truncated generalized Weibull, exponential, Raleigh and logistic distributions have been derived as special cases of our result, Some previous results for doubly truncated Weibull, standard exponential, power function and Burr type XII distributions are obtained as special cases. The general recurrence relation of single moments has been used in the case of the left and right truncation to characterize the Weibull, Burr type XII and Pareto distributions.  相似文献   

2.
For the first time, a new five-parameter distribution, called the beta generalized gamma distribution, is introduced and studied. It contains at least 25 special sub-models such as the beta gamma, beta Weibull, beta exponential, generalized gamma (GG), Weibull and gamma distributions and thus could be a better model for analysing positive skewed data. The new density function can be expressed as a linear combination of GG densities. We derive explicit expressions for moments, generating function and other statistical measures. The elements of the expected information matrix are provided. The usefulness of the new model is illustrated by means of a real data set.  相似文献   

3.
A general result for obtaining recurrence relations between product moments of order statistics is established and this result is used to determine the recurrence relations between product moments of some doubly truncated distributions. The examples considered are Weibull, exponential, Pareto, power function and Cauchy distributions.  相似文献   

4.
In this paper, we study some mathematical properties of the beta Weibull (BW) distribution, which is a quite flexible model in analysing positive data. It contains the Weibull, exponentiated exponential, exponentiated Weibull and beta exponential distributions as special sub-models. We demonstrate that the BW density can be expressed as a mixture of Weibull densities. We provide their moments and two closed-form expressions for their moment-generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and two entropies. The density of the BW-order statistics is a mixture of Weibull densities and two closed-form expressions are derived for their moments. The estimation of the parameters is approached by two methods: moments and maximum likelihood. We compare the performances of the estimates obtained from both the methods by simulation. The expected information matrix is derived. For the first time, we introduce a log-BW regression model to analyse censored data. The usefulness of the BW distribution is illustrated in the analysis of three real data sets.  相似文献   

5.
For the first time, we propose a five-parameter lifetime model called the McDonald Weibull distribution to extend the Weibull, exponentiated Weibull, beta Weibull and Kumaraswamy Weibull distributions, among several other models. We obtain explicit expressions for the ordinary moments, quantile and generating functions, mean deviations and moments of the order statistics. We use the method of maximum likelihood to fit the new distribution and determine the observed information matrix. We define the log-McDonald Weibull regression model for censored data. The potentiality of the new model is illustrated by means of two real data sets.  相似文献   

6.
The odd Weibull distribution is a three-parameter generalization of the Weibull and the inverse Weibull distributions having rich density and hazard shapes for modeling lifetime data. This paper explored the odd Weibull parameter regions having finite moments and examined the relation to some well-known distributions based on skewness and kurtosis functions. The existence of maximum likelihood estimators have shown with complete data for any sample size. The proof for the uniqueness of these estimators is given only when the absolute value of the second shape parameter is between zero and one. Furthermore, elements of the Fisher information matrix are obtained based on complete data using a single integral representation which have shown to exist for any parameter values. The performance of the odd Weibull distribution over various density and hazard shapes is compared with generalized gamma distribution using two different test statistics. Finally, analysis of two data sets has been performed for illustrative purposes.  相似文献   

7.
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.  相似文献   

8.
A method for selecting a distributional model for a random variable, given a random sample of observations of it, is studied for various cases. The problems considered include those of choosing between the Weibull and lognormal distributions, between the lognormal and gamma distributions, and between the gamma and Weibull distributions, as well as choosing one of the three. Simulation studies were performed to estimate probabilities of correct selection for the method when it is applied to these problems  相似文献   

9.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

10.
A necessary and sufficient condition that a continuous, positive random variable follow a gamma distribution is given in terms of any one of its conditional finite moments and an expression involving its failure rate. The results are then used to develop a characterization for a mixture of two gamma distributions. The general results about characterization of a mixture of gamma distributions yield several special cases that have appeared separately in recent literature, including characterization of a single exponential distribution, characterization of a single gamma distribution (in terms of either first or second moments) and a sufficient condition for a mixture of two exponential distributions (in terms of first moments). The condition in this last result is shown to be necessary also. Numerous other cases are possible, using different choices for distribution parameters along with a selection of the mixing parameter, for either individual or mixtures of distributions. Various characterizations can be expressed using higher order moments, too.  相似文献   

11.
The generalized gamma distribution is a flexible and attractive distribution because it incorporates several well-known distributions, i.e., gamma, Weibull, Rayleigh, and Maxwell. This article derives saddlepoint density and distribution functions for the ratio of two linear functions of generalized gamma variables and the product of n independent generalized gamma variables. Simulation studies are used to evaluate the accuracy of the saddlepoint approximations. The saddlepoint approximations are fast, easy, and very accurate.  相似文献   

12.
Recently, Kambo and his co-researchers (2012) proposed a method of approximation for evaluating the one-dimensional renewal function based on the first three moments. Their method is simple and elegant, which gives exact values for well-known distributions. In this article, we propose an analogous method for the evaluation of bivariate renewal function based on the first two moments of the variables and their joint moment. The proposed method yields exact results for certain widely used bivariate distributions like bivariate exponential distribution, bivariate Weibull distributions, and bivariate Pareto distributions. An illustrative example in the form of a two-dimensional warranty problem is considered and comparisons of our method are made with the results of other models.  相似文献   

13.
This article introduces a new generalization of the transmuted exponentiated modified Weibull distribution introduced by Eltehiwy and Ashour in 2013, using Kumaraswamy distribution introduced by Cordeiro and de Castro in 2011. We refer to the new distribution as Kumaraswamy-transmuted exponentiated modified Weibull (Kw-TEMW) distribution. The new model contains 54 lifetime distributions as special cases such as the KumaraswamyWeibull, exponentiated modified Weibull, exponentiated Weibull, exponentiated exponential, transmuted Weibull, Rayleigh, linear failure rate, and exponential distributions, among others. The properties of the new model are discussed and the maximum likelihood estimation is used to evaluate the parameters. Explicit expressions are derived for the moments and examine the order statistics. This model is capable of modeling various shapes of aging and failure criteria.  相似文献   

14.
This article introduces a new generalization of the transmuted Weibull distribution introduced by Aryal and Tsokos in 2011. We refer to the new distribution as exponentiated transmuted Weibull geometric (ETWG) distribution. The new model contains 22 lifetime distributions as special cases such as the exponentiated Weibull geometric, complementary Weibull geometric, exponentiated transmuted Weibull, exponentiated Weibull, and Weibull distributions, among others. The properties of the new model are discussed and the maximum likelihood estimation is used to evaluate the parameters. Explicit expressions are derived for the moments and examine the order statistics. To examine the performance of our new model in fitting several data we use two real sets of data, censored and uncensored, and then compare the fitting of the new model with some nested and nonnested models, which provides the best fit to all of the data. A simulation has been performed to assess the behavior of the maximum likelihood estimates of the parameters under the finite samples. This model is capable of modeling various shapes of aging and failure criteria.  相似文献   

15.
ABSTRACT

This article presents goodness-of-fit tests for two and three-parameter gamma distributions that are based on minimum quadratic forms of standardized logarithmic differences of values of the moment generating function and its empirical counterpart. The test statistics can be computed without reliance to special functions and have asymptotic chi-squared distributions. Monte Carlo simulations are used to compare the proposed test for the two-parameter gamma distribution with goodness-of-fit tests employing empirical distribution function or spacing statistics. Two data sets are used to illustrate the various tests.  相似文献   

16.
The generalized gamma distribution includes the exponential distribution, the gamma distribution, and the Weibull distribution as special cases. It also includes the log-normal distribution in the limit as one of its parameters goes to infinity. Prentice (1974) developed an estimation method that is effective even when the underlying distribution is nearly log-normal. He reparameterized the density function so that it achieved the limiting case in a smooth fashion relative to the new parameters. He also gave formulas for the second partial derivatives of the log-density function to be used in the nearly log-normal case. His formulas included infinite summations, and he did not estimate the error in approximating these summations.

We derive approximations for the log-density function and moments of the generalized gamma distribution that are smooth in the nearly log-normal case and involve only finite summations. Absolute error bounds for these approximations are included. The approximation for the first moment is applied to the problem of estimating the parameters of a generalized gamma distribution under the constraint that the distribution have mean one. This enables the development of a correspondence between the parameters in a mean one generalized gamma distribution and certain parameters in acoustic scattering theory.  相似文献   

17.
For the first time, we introduce a generalized form of the exponentiated generalized gamma distribution [Cordeiro et al. The exponentiated generalized gamma distribution with application to lifetime data, J. Statist. Comput. Simul. 81 (2011), pp. 827–842.] that is the baseline for the log-exponentiated generalized gamma regression model. The new distribution can accommodate increasing, decreasing, bathtub- and unimodal-shaped hazard functions. A second advantage is that it includes classical distributions reported in the lifetime literature as special cases. We obtain explicit expressions for the moments of the baseline distribution of the new regression model. The proposed model can be applied to censored data since it includes as sub-models several widely known regression models. It therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data. We show that our extended regression model is very useful by means of two applications to real data.  相似文献   

18.
Several different measures of skewness are commonly used in place of γ1, the third central moment divided by the cube of the standard deviation. The numerical values of these measures are compared in this paper for members of the gamma, lognormal or Weibull family of distributions and shown to vary considerably in most cases even when skewness and kurtosis are moderate.  相似文献   

19.
Generalized exponential distributions   总被引:8,自引:0,他引:8  
The three-parameter gamma and three-parameter Weibull distributions are commonly used for analysing any lifetime data or skewed data. Both distributions have several desirable properties, and nice physical interpretations. Because of the scale and shape parameters, both have quite a bit of flexibility for analysing different types of lifetime data. They have increasing as well as decreasing hazard rate depending on the shape parameter. Unfortunately both distributions also have certain drawbacks. This paper considers a three-parameter distribution which is a particular case of the exponentiated Weibull distribution originally proposed by Mudholkar, Srivastava & Freimer (1995) when the location parameter is not present. The study examines different properties of this model and observes that this family has some interesting features which are quite similar to those of the gamma family and the Weibull family, and certain distinct properties also. It appears this model can be used as an alternative to the gamma model or the Weibull model in many situations. One dataset is provided where the three-parameter generalized exponential distribution fits better than the three-parameter Weibull distribution or the three-parameter gamma distribution.  相似文献   

20.
Abstract

Simple expressions are presented that relate cumulants to central moments without involving moments about the origin. These expressions are used to obtain recursive formulae for the central moments of the gamma distribution, with exponential and chi-square distributions as special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号