首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.  The objective is to estimate the period and the light curve (or periodic function) of a variable star. Previously, several methods have been proposed to estimate the period of a variable star, but they are inaccurate especially when a data set contains outliers. We use a smoothing spline regression to estimate the light curve given a period and then find the period which minimizes the generalized cross-validation (GCV). The GCV method works well, matching an intensive visual examination of a few hundred stars, but the GCV score is still sensitive to outliers. Handling outliers in an automatic way is important when this method is applied in a 'data mining' context to a vary large star survey. Therefore, we suggest a robust method which minimizes a robust cross-validation criterion induced by a robust smoothing spline regression. Once the period has been determined, a nonparametric method is used to estimate the light curve. A real example and a simulation study suggest that the robust cross-validation and GCV methods are superior to existing methods.  相似文献   

2.
This paper addresses the problem of detecting a mixture of parallel regression lines when information about group member¬ship of individual cases is not given. The problem is approached as a missing variable problem, with the missing variables being the dummy variables that code for groups. If a mixture of par¬allel regression lines with normally distributed error terms is present, a simple regression model without dummy variables will produce residuals that follow approximately a mixed normal dis¬tribution. In a simulation studyr several goodness-of-fit tests of normality were used to test the residuals obtained from mis-specified models that excluded dummy variables, Factors varied in the simulation included the number and the separation of the parallel lines and the sample size, The goodness-of-fit test based on the sample kurtosis (82) was overall most powerful in detecting mixtures of parallel regression lines, Applications are discussed.  相似文献   

3.
A criterion for choosing an estimator in a family of semi-parametric estimators from incomplete data is proposed. This criterion is the expected observed log-likelihood (ELL). Adapted versions of this criterion in case of censored data and in presence of explanatory variables are exhibited. We show that likelihood cross-validation (LCV) is an estimator of ELL and we exhibit three bootstrap estimators. A simulation study considering both families of kernel and penalized likelihood estimators of the hazard function (indexed on a smoothing parameter) demonstrates good results of LCV and a bootstrap estimator called ELLbboot . We apply the ELLbboot criterion to compare the kernel and penalized likelihood estimators to estimate the risk of developing dementia for women using data from a large cohort study.  相似文献   

4.
In this note, we propose a new method for selecting the bandwidth parameter in non-parametric regression. While standard criteria, such as cross-validation, are based on the true regression curve about which we know little, we propose a criterion which focuses on the true errors about which assumptions may be made. Our proposal is to choose the bandwidth for which the residuals are as uncorrelated as possible. We use the Box-Pierce statistic as the objective to be minimized. In doing so, the behaviour of our residuals will be close to that of the true errors under the hypothesis of independent errors. A simulation study shows that our method succeeds in capturing the main features of the regression curve, in the sense that the number of turning-points of the curve is correctly estimated most of the time.  相似文献   

5.
ABSTRACT

This article considers nonparametric regression problems and develops a model-averaging procedure for smoothing spline regression problems. Unlike most smoothing parameter selection studies determining an optimum smoothing parameter, our focus here is on the prediction accuracy for the true conditional mean of Y given a predictor X. Our method consists of two steps. The first step is to construct a class of smoothing spline regression models based on nonparametric bootstrap samples, each with an appropriate smoothing parameter. The second step is to average bootstrap smoothing spline estimates of different smoothness to form a final improved estimate. To minimize the prediction error, we estimate the model weights using a delete-one-out cross-validation procedure. A simulation study has been performed by using a program written in R. The simulation study provides a comparison of the most well known cross-validation (CV), generalized cross-validation (GCV), and the proposed method. This new method is straightforward to implement, and gives reliable performances in simulations.  相似文献   

6.
Many different methods have been proposed to construct nonparametric estimates of a smooth regression function, including local polynomial, (convolution) kernel and smoothing spline estimators. Each of these estimators uses a smoothing parameter to control the amount of smoothing performed on a given data set. In this paper an improved version of a criterion based on the Akaike information criterion (AIC), termed AICC, is derived and examined as a way to choose the smoothing parameter. Unlike plug-in methods, AICC can be used to choose smoothing parameters for any linear smoother, including local quadratic and smoothing spline estimators. The use of AICC avoids the large variability and tendency to undersmooth (compared with the actual minimizer of average squared error) seen when other 'classical' approaches (such as generalized cross-validation (GCV) or the AIC) are used to choose the smoothing parameter. Monte Carlo simulations demonstrate that the AICC-based smoothing parameter is competitive with a plug-in method (assuming that one exists) when the plug-in method works well but also performs well when the plug-in approach fails or is unavailable.  相似文献   

7.
ON SPLINE SMOOTHING WITH AUTOCORRELATED ERRORS   总被引:1,自引:0,他引:1  
The generalised cross-validation criterion for choosing the degree of smoothing in spline regression is extended to accommodate an autocorrelated error sequence. It is demonstrated via simulation that the minimum generalised cross-validation smoothing spline is an inconsistent estimator in the presence of autocorrelated errors and that ignoring even moderate autocorrelation structure can seriously affect the performance of the cross-validated smoothing spline. The method of penalised maximum likelihood is used to develop an efficient algorithm for the case in which the autocorrelation decays exponentially. An application of the method to a published data-set is described. The method does not require the data to be equally spaced in time.  相似文献   

8.
In a nonlinear regression model based on a regularization method, selection of appropriate regularization parameters is crucial. Information criteria such as generalized information criterion (GIC) and generalized Bayesian information criterion (GBIC) are useful for selecting the optimal regularization parameters. However, the optimal parameter is often determined by calculating information criterion for all candidate regularization parameters, and so the computational cost is high. One simple method by which to accomplish this is to regard GIC or GBIC as a function of the regularization parameters and to find a value minimizing GIC or GBIC. However, it is unclear how to solve the optimization problem. In the present article, we propose an efficient Newton–Raphson type iterative method for selecting optimal regularization parameters with respect to GIC or GBIC in a nonlinear regression model based on basis expansions. This method reduces the computational time remarkably compared to the grid search and can select more suitable regularization parameters. The effectiveness of the method is illustrated through real data examples.  相似文献   

9.
We consider the problem of constructing nonlinear regression models with Gaussian basis functions, using lasso regularization. Regularization with a lasso penalty is an advantageous in that it estimates some coefficients in linear regression models to be exactly zero. We propose imposing a weighted lasso penalty on a nonlinear regression model and thereby selecting the number of basis functions effectively. In order to select tuning parameters in the regularization method, we use a deviance information criterion proposed by Spiegelhalter et al. (2002), calculating the effective number of parameters by Gibbs sampling. Simulation results demonstrate that our methodology performs well in various situations.  相似文献   

10.
The paper proposes a cross-validation method to address the question of specification search in a multiple nonlinear quantile regression framework. Linear parametric, spline-based partially linear and kernel-based fully nonparametric specifications are contrasted as competitors using cross-validated weighted L 1-norm based goodness-of-fit and prediction error criteria. The aim is to provide a fair comparison with respect to estimation accuracy and/or predictive ability for different semi- and nonparametric specification paradigms. This is challenging as the model dimension cannot be estimated for all competitors and the meta-parameters such as kernel bandwidths, spline knot numbers and polynomial degrees are difficult to compare. General issues of specification comparability and automated data-driven meta-parameter selection are discussed. The proposed method further allows us to assess the balance between fit and model complexity. An extensive Monte Carlo study and an application to a well-known data set provide empirical illustration of the method.  相似文献   

11.
One-step M (OSM)-estimator needs some initial/preliminary estimates at the beginning of the calculation process. In this study, we propose to use new initial estimates for the calculation of the OSM-estimator. We consider simple location and simple linear regression models when the distribution of the error terms is Jones and Faddy's skewed t. Monte-Carlo simulation study shows that the OSM estimator(s) based on the proposed initial estimates is/are more efficient than the OSM estimator(s) based on the traditional initial estimates especially for the skewed cases. We also analyze some real data sets taken from the literature at the end of the paper.  相似文献   

12.
In linear quantile regression, the regression coefficients for different quantiles are typically estimated separately. Efforts to improve the efficiency of estimators are often based on assumptions of commonality among the slope coefficients. We propose instead a two-stage procedure whereby the regression coefficients are first estimated separately and then smoothed over quantile level. Due to the strong correlation between coefficient estimates at nearby quantile levels, existing bandwidth selectors will pick bandwidths that are too small. To remedy this, we use 10-fold cross-validation to determine a common bandwidth inflation factor for smoothing the intercept as well as slope estimates. Simulation results suggest that the proposed method is effective in pooling information across quantile levels, resulting in estimates that are typically more efficient than the separately obtained estimates and the interquantile shrinkage estimates derived using a fused penalty function. The usefulness of the proposed method is demonstrated in a real data example.  相似文献   

13.
In this paper, a robust estimator is proposed for partially linear regression models. We first estimate the nonparametric component using the penalized regression spline, then we construct an estimator of parametric component by using robust S-estimator. We propose an iterative algorithm to solve the proposed optimization problem, and introduce a robust generalized cross-validation to select the penalized parameter. Simulation studies and a real data analysis illustrate that the our proposed method is robust against outliers in the dataset or errors with heavy tails.  相似文献   

14.
The estimation of the hazard rate has a great number of practical appli¬cations in dependence situations (seismicity analysis, reliability, economics), Based on kernel estimates of the density and the distribution function, we study the properties of the nonparametric estimator of the hazard function as-sociated with a strongly mixing time series. We prove consistency and asymp¬totic normality properties, and a cross-validation method for the smoothing parameter selection is studied. Some simulations and a practical application to real data are also shown.  相似文献   

15.
Cross-validation has been widely used in the context of statistical linear models and multivariate data analysis. Recently, technological advancements give possibility of collecting new types of data that are in the form of curves. Statistical procedures for analysing these data, which are of infinite dimension, have been provided by functional data analysis. In functional linear regression, using statistical smoothing, estimation of slope and intercept parameters is generally based on functional principal components analysis (FPCA), that allows for finite-dimensional analysis of the problem. The estimators of the slope and intercept parameters in this context, proposed by Hall and Hosseini-Nasab [On properties of functional principal components analysis, J. R. Stat. Soc. Ser. B: Stat. Methodol. 68 (2006), pp. 109–126], are based on FPCA, and depend on a smoothing parameter that can be chosen by cross-validation. The cross-validation criterion, given there, is time-consuming and hard to compute. In this work, we approximate this cross-validation criterion by such another criterion so that we can turn to a multivariate data analysis tool in some sense. Then, we evaluate its performance numerically. We also treat a real dataset, consisting of two variables; temperature and the amount of precipitation, and estimate the regression coefficients for the former variable in a model predicting the latter one.  相似文献   

16.
Bias-corrected confidence bands for general nonparametric regression models are considered. We use local polynomial fitting to construct the confidence bands and combine the cross-validation method and the plug-in method to select the bandwidths. Related asymptotic results are obtained. Our simulations show that confidence bands constructed by local polynomial fitting have much better coverage than those constructed by using the Nadaraya–Watson estimator. The results are also applicable to nonparametric autoregressive time series models.  相似文献   

17.
Abstract.  We consider models based on multivariate counting processes, including multi-state models. These models are specified semi-parametrically by a set of functions and real parameters. We consider inference for these models based on coarsened observations, focusing on families of smooth estimators such as produced by penalized likelihood. An important issue is the choice of model structure, for instance, the choice between a Markov and some non-Markov models. We define in a general context the expected Kullback–Leibler criterion and we show that the likelihood-based cross-validation (LCV) is a nearly unbiased estimator of it. We give a general form of an approximate of the leave-one-out LCV. The approach is studied by simulations, and it is illustrated by estimating a Markov and two semi-Markov illness–death models with application on dementia using data of a large cohort study.  相似文献   

18.
Abstract: The predictor that minimizes mean-squared prediction error is used to derive a goodness-of-fit measure that offers an asymptotically valid model selection criterion for a wide variety of regression models. In particular, a new goodness-of-fit criterion (cr2) is proposed for censored or otherwise limited dependent variables. The new goodness-of-fit measure is then applied to the analysis of duration.  相似文献   

19.
We study regression estimation when the explanatory variable is functional. Nonparametric estimates of the regression operator have been recently introduced. They depend on a smoothing factor which controls its behavior, and the aim of our work is to construct some data-driven criterion for choosing this smoothing parameter. The criterion can be formulated in terms of a functional version of cross-validation ideas. Under mild assumptions on the unknown regression operator, it is seen that this rule is asymptotically optimal. As by-products of this result, we state some asymptotic equivalences for several measures of accuracy for nonparametric estimate of the regression operator. We also present general inequalities for bounding moments of random sums involving functional variables. Finally, a short simulation study is carried out to illustrate the behavior of our method for finite samples.  相似文献   

20.
To reduce the dimensionality of regression problems, sliced inverse regression approaches make it possible to determine linear combinations of a set of explanatory variables X related to the response variable Y in general semiparametric regression context. From a practical point of view, the determination of a suitable dimension (number of the linear combination of X) is important. In the literature, statistical tests based on the nullity of some eigenvalues have been proposed. Another approach is to consider the quality of the estimation of the effective dimension reduction (EDR) space. The square trace correlation between the true EDR space and its estimate can be used as goodness of estimation. In this article, we focus on the SIRα method and propose a naïve bootstrap estimation of the square trace correlation criterion. Moreover, this criterion could also select the α parameter in the SIRα method. We indicate how it can be used in practice. A simulation study is performed to illustrate the behavior of this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号