首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a class of distributions with the inverse linear mean residual quantile function. The distributional properties of the family of distributions are studied. We then discuss the reliability characteristics of the family of distributions. Some characterizations of the class of distributions are also discussed. The parameters of the class of distributions are estimated using the method of L-moments. The proposed class of distributions is applied to a real data set.  相似文献   

2.
In this paper, we develop non-parametric estimation of the mean residual quantile function based on right-censored data. Two non-parametric estimators, one based on the empirical quantile function and the other using the kernel smoothing method, are proposed. Asymptotic properties of the estimators are discussed. Monte Carlo simulation studies are conducted to compare the two estimators. The method is illustrated with the aid of two real data sets.  相似文献   

3.
In the present paper, we introduce and study a class of distributions that has the linear mean residual quantile function. Various distributional properties and reliability characteristics of the class are studied. Some characterizations of the class of distributions are presented. We then present generalizations of this class of distributions using the relationship between various quantile based reliability measures. The method of L-moments is employed to estimate parameters of the class of distributions. Finally, we apply the proposed class of distributions to a real data set.  相似文献   

4.
Recently, in the literature, the use of quantile functions in the place of distribution functions has provided new models, alternative methodology and easier algebraic manipulations. In this paper, we introduce new orders among the random variables in terms of their quantile functions like the reversed hazard quantile function, the reversed mean residual quantile function and the reversed variance residual quantile function orders. The relationships among the proposed orders and some existing orders are also discussed.  相似文献   

5.
In this article, we introduce and study a class of distributions that has linear hazard quantile function. Various distributional properties and reliability characteristics of the class are studied. Some characterizations of the class of distributions are presented. The method of L-moments is employed to estimate parameters of the class of distributions. Finally, we apply the proposed class to a real data set.  相似文献   

6.
The bivariate quantile residual life function can play an important role in statistical reliability and survival analysis. In many situations assuming a decreasing form for it is recommended. Here, we propose a new non-parametric estimator of this measure under such restriction. It has been shown that the new estimator is consistent and, with proper normalization, weakly converges to a bivariate Gaussian process. A simulation study shows that the proposed estimator is an alternative to the unrestricted estimator when the bivariate quantile residual life is decreasing. Finally, the new estimators are applied to two real data sets.  相似文献   

7.
In this article, we propose a new class of distributions defined by a quantile function, which nests several distributions as its members. The quantile function proposed here is the sum of the quantile functions of the generalized Pareto and Weibull distributions. Various distributional properties and reliability characteristics of the class are discussed. The estimation of the parameters of the model using L-moments is studied. Finally, we apply the model to a real life dataset.  相似文献   

8.
Abstract

Balakrishnan et al. proposed a two-piece skew logistic distribution by making use of the cumulative distribution function (CDF) of half distributions as the building block, to give rise to an asymmetric family of two-piece distributions, through the inclusion of a single shape parameter. This paper proposes the construction of asymmetric families of two-piece distributions by making use of quantile functions of symmetric distributions as building blocks. This proposition will enable the derivation of a general formula for the L-moments of two-piece distributions. Examples will be presented, where the logistic, normal, Student’s t(2) and hyperbolic secant distributions are considered.  相似文献   

9.
We give a general procedure to characterize multivariate distributions by using products of the hazard gradient and mean residual life components. This procedure is applied to characterize multivariate distributions as Gumbel exponential, Lomax, Burr, Pareto and generalized Pareto multivariate distributions. Our results extend the results of several authors and can be used to study how to extend univariate models to the multivariate set-up.  相似文献   

10.
In reliability studies, the additional life time given that a component has survived until time t is called the Mean residual life function (MRLF). This MRLF determines the distribution function uniquely. There exist many life testing situations which can be best described as mixtures of distributions. In this paper we have considered the general MRLF and have developed a method of obtaining the mixing distribution when the original distribution is exponential. Some examples are discussed, in one of which Morrison’s (1978) result is obtained as a special case.  相似文献   

11.
12.
In this article, we present various distributional properties and application to reliability analysis of the Govindarajulu distribution. A quantile-based analysis is performed as the distribution function is not analytically tractable. The properties of the distribution like percentiles, L-moments, L-skewness, and kurtosis and order statistics are presented. Various reliability characteristics are derived along with some characterization theorems by relationship between reliability measures. We also make a comparative study with other competing models with reference to real data.  相似文献   

13.
The paper discusses a quantile-based definition for the well-known proportional odds model. We present various reliability properties of the model using quantile functions. Different ageing properties are derived. A generalization for the class of distributions with bilinear hazard quantile function is established and the practical application of this model is illustrated with a real-life data set.  相似文献   

14.
In this paper, we first provide conditions for preservation of the mean residual life (mrl) order under weighting. Then we apply the obtained results to establish our results about preservation of the decreasing mrl class by weighted distributions. In addition, we present some results for comparing the original random variable to its weighted version in terms of the mrl order. Also, some examples are given to illustrate the results.  相似文献   

15.
16.
Sometimes additive hazard rate model becomes more important to study than the celebrated (Cox, 1972) proportional hazard rate model. But the concept of the hazard function is sometimes abstract, in comparison to the concept of mean residual life function. In this paper, we have defined a new model called ‘dynamic additive mean residual life model’ where the covariates are time dependent, and study the closure of this model under different stochastic orders.  相似文献   

17.
It was shown that the decreasing mean residual life class implies the decreasing residual quantile entropy class and the decreasing residual quantile entropy class is not closed under formation of mixture. The less quantile entropy order was proved to be closed under the accelerated life models and the generalized order statistics models. Meanwhile, bounds of the entropy and the residual quantile entropy of some aging classes were established.  相似文献   

18.
Often, in reliability theory, risk analysis, renewal processes and actuarial studies, mean residual life function or life expectancy plays an important role in studying the conditional tail measure of lifetime data. In this paper, we introduce the notion of the mean residual waiting time of records and present some monotonic and aging properties. Sharp bounds for the mean residual waiting time of records are also investigated.  相似文献   

19.
In this paper, we investigate the effect of a cold standby component on the mean residual life (MRL) of a system. When the system fails, a cold standby component is immediately put in operation. We particularly focus on the coherent systems in which, after putting the standby component into operation, the failure of the system is due to the next component failure. For these systems, we define MRL functions and obtain their explicit expressions. Also some stochastic ordering results are provided. Such systems include k-out-of-n systems. Hence, our results extend some results in literature.  相似文献   

20.
The quantile residual lifetime function provides comprehensive quantitative measures for residual life, especially when the distribution of the latter is skewed or heavy‐tailed and/or when the data contain outliers. In this paper, we propose a general class of semiparametric quantile residual life models for length‐biased right‐censored data. We use the inverse probability weighted method to correct the bias due to length‐biased sampling and informative censoring. Two estimating equations corresponding to the quantile regressions are constructed in two separate steps to obtain an efficient estimator. Consistency and asymptotic normality of the estimator are established. The main difficulty in implementing our proposed method is that the estimating equations associated with the quantiles are nondifferentiable, and we apply the majorize–minimize algorithm and estimate the asymptotic covariance using an efficient resampling method. We use simulation studies to evaluate the proposed method and illustrate its application by a real‐data example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号