共查询到20条相似文献,搜索用时 15 毫秒
1.
The Danish fire insurance data have recently been modeled by composite distributions, i.e., distributions made up by piecing together two or more distributions. Here, we introduce a new non composite distribution that performs well with respect to the Danish fire insurance data. It fits better than almost all of the commonly known heavy-tailed distributions and some of the composite distributions. 相似文献
2.
Pedro L. Ramos Francisco Louzada Taciana K. O. Shimizu Aline O. Luiz 《统计学通讯:理论与方法》2019,48(10):2372-2389
In this paper a new distribution is proposed. This new model provides more flexibility to modeling data with upside-down bathtub hazard rate function. A significant account of mathematical properties of the new distribution is presented. The maximum likelihood estimators for the parameters in the presence of complete and censored data are presented. Two corrective approaches are considered to derive modified estimators that are bias-free to second order. A numerical simulation is carried out to examine the efficiency of the bias correction. Finally, an application using a real data set is presented in order to illustrate our proposed distribution. 相似文献
3.
Emílio A. Coelho-Barros Josmar Mazucheli Jorge A. Achcar Kelly Vanessa Parede Barco José Rafael Tovar Cuevas 《Journal of applied statistics》2018,45(11):2081-2094
In this study, classical and Bayesian inference methods are introduced to analyze lifetime data sets in the presence of left censoring considering two generalizations of the Lindley distribution: a first generalization proposed by Ghitany et al. [Power Lindley distribution and associated inference, Comput. Statist. Data Anal. 64 (2013), pp. 20–33], denoted as a power Lindley distribution and a second generalization proposed by Sharma et al. [The inverse Lindley distribution: A stress–strength reliability model with application to head and neck cancer data, J. Ind. Prod. Eng. 32 (2015), pp. 162–173], denoted as an inverse Lindley distribution. In our approach, we have used a distribution obtained from these two generalizations denoted as an inverse power Lindley distribution. A numerical illustration is presented considering a dataset of thyroglobulin levels present in a group of individuals with differentiated cancer of thyroid. 相似文献
4.
This paper introduces a new class of distributions by compounding the inverse Lindley distribution and power series distributions which is called compound inverse Lindley power series (CILPS) distributions. An important feature of this distribution is that the lifetime of the component associated with a particular risk is not observable, rather only the minimum lifetime value among all risks is observable. Further, these distributions exhibit an unimodal failure rate. Various properties of the distribution are derived. Besides, two special models of the new family are investigated. The model parameters of the two sub-models of the new family are obtained by the methods of maximum likelihood, least square, weighted least square and maximum product of spacing and compared them using the Monte Carlo simulation study. Besides, the log compound inverse Lindley regression model for censored data is proposed. Three real data sets are analyzed to illustrate the flexibility and importance of the proposed models. 相似文献
5.
Inferential analysis for the reliability parameter based on the three-parameter Lindley distribution
ABSTRACTIn this article, we consider the estimation of R = P(Y < X), when Y and X are two independent three-parameter Lindley (LI) random variables. On the basis of two independent samples, the modified maximum likelihood estimator along its asymptotic behavior and conditional likelihood-based estimator are used to estimate R. We also propose sample-based estimate of R and the associated credible interval based on importance sampling procedure. A real life data set involving the times to breakdown of an insulating fluid is presented and analyzed for illustrative purposes. 相似文献
6.
《Journal of Statistical Computation and Simulation》2012,82(2):290-309
The generalized Rayleigh (GR) distribution [V.G. Vodǎ, Inferential procedures on a generalized Rayleigh variate, I, Appl. Math. 21 (1976), pp. 395–412; V.G. Vodǎ, Inferential procedures on a generalized Rayleigh variate, II, Appl. Math. 21 (1976), pp. 413–419] has been applied in several areas such as health, agriculture, biology and other sciences. For the first time, we propose the Kumaraswamy GR (KwGR) distribution for analysing lifetime data. The new density function can be expressed as a mixture of GR density functions. Explicit formulae are derived for some of its statistical quantities. The density function of the order statistics can be expressed as a mixture of GR density functions. We also propose a linear log-KwGR regression model for analysing data with real support to extend some known regression models. The estimation of parameters is approached by maximum likelihood. The importance of the new models is illustrated in two real data sets. 相似文献
7.
Extreme quantile estimation plays an important role in risk management and environmental statistics among other applications. A popular method is the peaks-over-threshold (POT) model that approximate the distribution of excesses over a high threshold through generalized Pareto distribution (GPD). Motivated by a practical financial risk management problem, we look for an appropriate prior choice for Bayesian estimation of the GPD parameters that results in better quantile estimation. Specifically, we propose a noninformative matching prior for the parameters of a GPD so that a specific quantile of the Bayesian predictive distribution matches the true quantile in the sense of Datta et al. (2000). 相似文献
8.
In this paper, the researchers attempt to introduce a new generalization of the Weibull-geometric distribution. The failure rate function of the new model is found to be increasing, decreasing, upside-down bathtub, and bathtub-shaped. The researchers obtained the new model by compounding Weibull distribution and discrete generalized exponential distribution of a second type, which is a generalization of the geometric distribution. The new introduced model contains some previously known lifetime distributions as well as a new one. Some basic distributional properties and moments of the new model are discussed. Estimation of the parameters is illustrated and the model with two known real data sets is examined. 相似文献
9.
The generalized exponential is the most commonly used distribution for analyzing lifetime data. This distribution has several desirable properties and it can be used quite effectively to analyse several skewed life time data. The main aim of this paper is to introduce absolutely continuous bivariate generalized exponential distribution using the method of Block and Basu (1974). In fact, the Block and Basu exponential distribution will be extended to the generalized exponential distribution. We call the new proposed model as the Block and Basu bivariate generalized exponential distribution, then, discuss its different properties. In this case the joint probability distribution function and the joint cumulative distribution function can be expressed in compact forms. The model has four unknown parameters and the maximum likelihood estimators cannot be obtained in explicit form. To compute the maximum likelihood estimators directly, one needs to solve a four dimensional optimization problem. The EM algorithm has been proposed to compute the maximum likelihood estimations of the unknown parameters. One data analysis is provided for illustrative purposes. Finally, we propose some generalizations of the proposed model and compare their models with each other. 相似文献
10.
S. Acitas 《Journal of Statistical Computation and Simulation》2018,88(12):2325-2341
In this study, a new extension of generalized half-normal (GHN) distribution is introduced. Since this new distribution can be viewed as weighted version of GHN distribution, it is called as weighted generalized half-normal (WGHN) distribution. It is shown that WGHN distribution can be observed as a single constrained and hidden truncation model. Therefore, the new distribution is more flexible than the GHN distribution. Some statistical properties of the WGHN distribution are studied, i.e. moments, cumulative distribution function, hazard rate function are derived. Furthermore, maximum likelihood estimation of the parameters is considered. Some real-life data sets taken from the literature are modelled using the WGHN distribution. It is seen that for these data sets the WGHN distribution provides better fitting than the GHN and slashed generalized half-normal (SGHN) distributions. 相似文献
11.
Josmar Mazucheli André Felipe Berdusco Menezes Subrata Chakraborty 《Journal of applied statistics》2019,46(4):700-714
In this paper considering an appropriate transformation on the Lindley distribution, we propose the unit-Lindley distribution and investigate some of its statistical properties. An important fact associated with this new distribution is that it is possible to obtain the analytical expression for bias correction of the maximum likelihood estimator. Moreover, it belongs to the exponential family. This distribution allows us to incorporate covariates directly in the mean and consequently to quantify their influences on the average of the response variable. Finally, a practical application is presented to show that our model fits much better than the Beta regression. 相似文献
12.
In this article, we introduce a new extension of the generalized linear failure rate (GLFR) distributions. It includes some well-known lifetime distributions such as extension of generalized exponential and GLFR distributions as special sub-models. In addition, it can have a constant, decreasing, increasing, upside-down bathtub (unimodal), and bathtub-shaped hazard rate function (hrf) depending on its parameters. We provide some of its statistical properties such as moments, quantiles, skewness, kurtosis, hrf, and reversible hrf. The maximum likelihood estimation of the parameters is also discussed. At the end, a real dataset is given to illustrate the usefulness of this new distribution in analyzing lifetime data. 相似文献
13.
ABSTRACTThe non parametric approach is considered to estimate probability density function (Pdf) which is supported on(0, ∞). This approach is the inverse gamma kernel. We show that it has same properties as gamma, reciprocal inverse Gaussian, and inverse Gaussian kernels such that it is free of the boundary bias, non negative, and it achieves the optimal rate of convergence for the mean integrated squared error. Also some properties of the estimator were established such as bias and variance. Comparison of the bandwidth selection methods for inverse gamma kernel estimation of Pdf is done. 相似文献
14.
15.
Mohammad Z. Raqab Mohamed T. Madi 《Journal of statistical planning and inference》2011,141(10):3313-3322
In this paper, and based on a progressive type-II censored sample from the generalized Rayleigh (GR) distribution, we consider the problem of estimating the model parameters and predicting the unobserved removed data. Maximum likelihood and Bayesian approaches are used to estimate the scale and shape parameters. The Gibbs and Metropolis samplers are used to predict the life lengths of the removed units in multiple stages of the progressively censored sample. Artificial and real data analyses have been performed for illustrative purposes. 相似文献
16.
17.
Gauss M. Cordeiro 《Statistics》2013,47(1):182-199
We propose a new three-parameter continuous model called the McDonald arcsine distribution, which is a very competitive model to the beta, beta type I and Kumaraswamy distributions for modelling rates and proportions. We provide a mathematical treatment of the new distribution including explicit expressions for the density function, moments, generating and quantile functions, mean deviations, two probability measures based on the Bonferroni and Lorenz curves, Shannon entropy, Rényi entropy and cumulative residual entropy. Maximum likelihood is used to estimate the model parameters and the expected information matrix is determined. An application of the proposed model to real data shows that it can give consistently a better fit than other important statistical models. 相似文献
18.
Generalized Pareto distribution (GPD) has been widely used to model exceedances over thresholds. In this article we propose a new method called weighted nonlinear least squares (WNLS) to estimate the parameters of the GPD. The WNLS estimators always exist and are simple to compute. Some asymptotic results of the proposed method are provided. The simulation results indicate that the proposed method performs well compared to existing methods in terms of mean squared error and bias. Its advantages are further illustrated through the analysis of two real data sets. 相似文献
19.
Mohammed K. Shakhatreh 《统计学通讯:理论与方法》2018,47(21):5205-5226
In this article, a new three-parameter extension of the two-parameter log-logistic distribution is introduced. Several distributional properties such as moment-generating function, quantile function, mean residual lifetime, the Renyi and Shanon entropies, and order statistics are considered. The estimation of the model parameters for complete and right-censored cases is investigated competently by maximum likelihood estimation (MLE). A simulation study is conducted to show that these MLEs are consistent in moderate samples. Two real datasets are considered; one is a right-censored data to show that the proposed model has a superior performance over several existing popular models. 相似文献
20.
Y. S. Wagh 《统计学通讯:模拟与计算》2017,46(5):4098-4112
In this article, we take a brief overview of different functional forms of generalized Poisson distribution (GPD) and various methods of its parameter estimation found in the literature. We compare the method of moment estimation (ME) and maximum likelihood estimation (MLE) of parameters of GPD through simulation study in terms of bias, MSE and covariance. To simulate random numbers from GPD, we develop a Matlab function gpoissrnd(). The simulation study leads to the important conclusion that the ME performs better or equally good as compared to MLE when sample size is small.
Further we fit the GPD to various datasets in literature using both estimation methods and observe that the results do not differ significantly even though the sample size is large. Overall, we conclude that for GPD, use of ME in place of MLE will lead to almost similar results. The computational simplicity in calculation of ME as compared to MLE also gives support to the use of ME in case of GPD for practitioners. 相似文献