首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Pao-sheng Shen 《Statistics》2015,49(3):602-613
For the regression parameter β in the Cox model, there have been several estimates based on different types of approximated likelihood. For right-censored data, Ren and Zhou [Full likelihood inferences in the Cox model: an empirical approach. Ann Inst Statist Math. 2011;63:1005–1018] derive the full likelihood function for (β, F0), where F0 is the baseline distribution function in the Cox model. In this article, we extend their results to left-truncated and right-censored data with discrete covariates. Using the empirical likelihood parameterization, we obtain the full-profile likelihood function for β when covariates are discrete. Simulation results indicate that the maximum likelihood estimator outperforms Cox's partial likelihood estimator in finite samples.  相似文献   

2.
Consider a linear regression model with regression parameter β=(β1,…,βp) and independent normal errors. Suppose the parameter of interest is θ=aTβ, where a is specified. Define the s-dimensional parameter vector τ=CTβt, where C and t are specified. Suppose that we carry out a preliminary F test of the null hypothesis H0:τ=0 against the alternative hypothesis H1:τ≠0. It is common statistical practice to then construct a confidence interval for θ with nominal coverage 1−α, using the same data, based on the assumption that the selected model had been given to us a priori (as the true model). We call this the naive 1−α confidence interval for θ. This assumption is false and it may lead to this confidence interval having minimum coverage probability far below 1−α, making it completely inadequate. We provide a new elegant method for computing the minimum coverage probability of this naive confidence interval, that works well irrespective of how large s is. A very important practical application of this method is to the analysis of covariance. In this context, τ can be defined so that H0 expresses the hypothesis of “parallelism”. Applied statisticians commonly recommend carrying out a preliminary F test of this hypothesis. We illustrate the application of our method with a real-life analysis of covariance data set and a preliminary F test for “parallelism”. We show that the naive 0.95 confidence interval has minimum coverage probability 0.0846, showing that it is completely inadequate.  相似文献   

3.
Let F and G be life distributions with respective failure rate functions rF and rG and respective 100α-percentile (0 < α < 1) residual life functions qα, F, and qα, G. Distribution-free two-sample tests are proposed for testing H0: F = G against H1,α,: qα, Fqα, G and H2 α: qβ, Fqβ,G for all β ≥ α. This class of tests includes as a special case the test of Kochar (1981) for the alternative H*2: rFrG. A theorem of Govindarajulu (1976) is extended in order to obtain asymptotic normality of the test statistics. The condition qα, Fqα, G is implied by rFrG and is unrelated to the stochastic ordering FG; if F and G are Weibull distributions with respective shape parameters c1 and c2 such that 1 ≤ C1 < C2, then qα,Fqα, G for all α larger than a function of the parameters.  相似文献   

4.
ABSTRACT

Suppose F and G are two life distribution functions. It is said that F is more IFRA (increasing failure rate average) than G (written by F ? *G) if G? 1F(x) is star-shaped on (0, ∞). In this paper, the problem of testing H0: F = *G against H1: F ? *G and F*G is considered in both cases when G is known and when G is unknown. We propose a new test based on U-statistics and obtain the asymptotic distribution of the test statistics. The new test is compared with some well-known tests in the literature. In addition, we apply our test to a real data set in the context of reliability.  相似文献   

5.
Let Fk:m be the cumulative disribution function of the kth order statistic in a sample of size n from a distribution

F(x) with density function f(x).The primary objective of this paper is to show that Fk+1mis IHR(increasing hazard rate) if Fkm(x)is IHH and that Fk-1:n(x)is DHR.(decreasing hazard rate) if Fkm(x) is DHR.  相似文献   

6.
In this article, we consider the mean remaining strength of a k-out-of-n:F system in the stress–strength setup for the exchangeable components. We provide some results for parallel and series systems under this setup, where X1, X2, …, Xn are the strengths of the components designed under the common stress. An illustrative example is given for the k-out-of- n:F system using the multivariate FGM distribution.  相似文献   

7.
Let F = {F0: 0 ϵ Θ} denote the class of natural exponential family of distributions having power variance function, (NEF-PVF). We consider the problem of sequentially estimating the mean μ of F0 ϵ F, based on i.i.d. observations from F0. We propose an appropriate sequential estimation procedure under a combined loss of estimation error and sampling cost. We provide expansion for the regret Ra and study its asymptotic properties. We show that Ra = cv2(μ) + o(1) as a → ∞, where c > 0 is a known constant and v(μ) denotes the coefficient of variation of F0.  相似文献   

8.
We consider the case 1 interval censorship model in which the survival time has an arbitrary distribution function F0 and the inspection time has a discrete distribution function G. In such a model one is only able to observe the inspection time and whether the value of the survival time lies before or after the inspection time. We prove the strong consistency of the generalized maximum-likelihood estimate (GMLE) of the distribution function F0 at the support points of G and its asymptotic normality and efficiency at what we call regular points. We also present a consistent estimate of the asymptotic variance at these points. The first result implies uniform strong consistency on [0, ∞) if F0 is continuous and the support of G is dense in [0, ∞). For arbitrary F0 and G, Peto (1973) and Tumbull (1976) conjectured that the convergence for the GMLE is at the usual parametric rate n½ Our asymptotic normality result supports their conjecture under our assumptions. But their conjecture was disproved by Groeneboom and Wellner (1992), who obtained the nonparametric rate ni under smoothness assumptions on the F0 and G.  相似文献   

9.
In this article, we investigate the precise large deviations for a sum of independent but not identical distributed random variables. {X n , n ≥ 1} are independent non-negative random variables with distribution functions {F n , n ≥ 1}. We assume that the average of right tails of distribution functions F n is equivalent to some distribution function F with consistently varying tails. In applications, we apply our main results to a realistic example (Pareto-type distribution) and obtain a specific result.  相似文献   

10.
John R. Collins 《Statistics》2013,47(4):287-304

We derive optimal bias-robust L-estimators of a scale parameter σ based on random samples from F(( ·?θ/σ), where θ and σ are unknown and F is an unknown member of a ε-contaminated neighborhood of a fixed symmetric error distribution F 0. Within a very general class S of L-estimators which are Fisher-consistent at F, we solve for: (i) the estimator with minimax asymptotic bias over the ε-contamination neighborhood; and (ii) the estimator with minimum gross error sensitivity at F 0 [the limiting case of (i) as ε → 0]. The solutions to problems (i) and (ii) are shown, using a generalized method of moment spaces, to be mixtures of at most two interquantile ranges. A graphical method is presented for finding the optimal bias-robust solutions, and examples are given.  相似文献   

11.
Abstract There are given k (≥22) independent distributions with c.d.f.'s F(x;θj) indexed by a scale parameter θj, j = 1,…, k. Let θ[i] (i = 1,…, k) denote the ith smallest one of θ1,…, θk. In this paper we wish to show that, under some regularity conditions, there does not exist an exact β-level (0≤β1) confidence interval for the ith smallest scale parameter θi based on k independent samples. Since the log transformation method may not yield the desired results for the scale parameter problem, we will treat the scale parameter case directly without transformation. Application is considered for normal variances. Two conservative one-sided confidence intervals for the ith smallest normal variance and the percentage points needed to actually apply the intervals are provided.  相似文献   

12.
Consider a linear function of order statistics (“L-estimate”) which can be expressed as a statistical function T(Fn) based on the sample cumulative distribution function Fn. Let T*(Fn) be the corresponding jackknifed version of T(Fn), and let V2n be the jackknife estimate of the asymptotic variance of n 1/2T(Fn) or n 1/2T*(Fn). In this paper, we provide a Berry-Esséen rate of the normal approximation for a Studentized jackknife L-estimate n1/2[T*(Fn) - T(F)]/Vn, where T(F) is the basic functional associated with the L-estimate.  相似文献   

13.
Consider the linear model (y, Xβ V), where the model matrix X may not have a full column rank and V might be singular. In this paper we introduce a formula for the difference between the BLUES of Xβ under the full model and the model where one observation has been deleted. We also consider the partitioned linear regression model where the model matrix is (X1: X2) the corresponding vector of unknown parameters being (β′1 : β′2)′. We show that the BLUE of X1 β1 under a specific reduced model equals the corresponding BLUE under the original full model and consider some interesting consequences of this result.  相似文献   

14.
Newton's binomial series expansion is used to develop a (class of) distribution function(s) Fr:∝ which may be interpreted as the distribution of the rthorder statistic with nonintegral sample size∝. It is shown that Fr:∝ has properties similar to Fr:n. Multivariate extension is considered and an elementary proof of the integral representation for the joint distribution of a subset of order statistics is given. An application is included.  相似文献   

15.
This article addresses the problem of testing the null hypothesis H0 that a random sample of size n is from a distribution with the completely specified continuous cumulative distribution function Fn(x). Kolmogorov-type tests for H0 are based on the statistics C+ n = Sup[Fn(x)?F0(x)] and C? n=Sup[F0(x)?Fn(x)], where Fn(x) is an empirical distribution function. Let F(x) be the true cumulative distribution function, and consider the ordered alternative H1: F(x)≥F0(x) for all x and with strict inequality for some x. Although it is natural to reject H0 and accept H1 if C + n is large, this article shows that a test that is superior in some ways rejects F0 and accepts H1 if Cmdash n is small. Properties of the two tests are compared based on theoretical results and simulated results.  相似文献   

16.
We consider the Gauss-Markoff model (Y,X0β,σ2V) and provide solutions to the following problem: What is the class of all models (Y,Xβ,σ2V) such that a specific linear representation/some linear representation/every linear representation of the BLUE of every estimable parametric functional p'β under (Y,X0β,σ2V) is (a) an unbiased estimator, (b) a BLUE, (c) a linear minimum bias estimator and (d) best linear minimum bias estimator of p'β under (Y,Xβ,σ2V)? We also analyse the above problems, when attention is restricted to a subclass of estimable parametric functionals.  相似文献   

17.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

18.
For a continuous random variable X with support equal to (a, b), with c.d.f. F, and g: Ω1 → Ω2 a continuous, strictly increasing function, such that Ω1∩Ω2?(a, b), but otherwise arbitrary, we establish that the random variables F(X) ? F(g(X)) and F(g? 1(X)) ? F(X) have the same distribution. Further developments, accompanied by illustrations and observations, address as well the equidistribution identity U ? ψ(U) = dψ? 1(U) ? U for UU(0, 1), where ψ is a continuous, strictly increasing and onto function, but otherwise arbitrary. Finally, we expand on applications with connections to variance reduction techniques, the discrepancy between distributions, and a risk identity in predictive density estimation.  相似文献   

19.
H. M. Barakat 《Statistics》2013,47(5):1005-1012
In this paper, we show that both the class of beta-generated distributions GF and its base distribution F belong to the same domain of maximal (or minimal or upper record value or lower record value) attraction. Moreover, it is shown that the weak convergence of any non-extreme order statistic (central or intermediate order statistic), based on a base distribution F, to a non-degenerate limit type implies the weak convergence of GF to a non-degenerate limit type. The relations between the two limit types are deduced.  相似文献   

20.
Let X1,X2,…,Xp be p random variables with cdf's F1(x),F2(x),…,Fp(x)respectively. Let U = min(X1,X2,…,Xp) and V = max(X1,X2,…,Xp).In this paper we study the problem of uniquely determining and estimating the marginal distributions F1,F2,…,Fp given the distribution of U or of V.

First the problem of competing and complementary risks are introduced with examples and the corresponding identification problems are considered when the X1's are independently distributed and U(V) is identified, as well as the case when U(V) is not identified. The case when the X1's are dependent is considered next. Finally the problem of estimation is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号