共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of the Korean Statistical Society》2014,43(3):367-379
This paper is concerned with statistical inference for partially nonlinear models. Empirical likelihood method for parameter in nonlinear function and nonparametric function is investigated. The empirical log-likelihood ratios are shown to be asymptotically chi-square and then the corresponding confidence intervals are constructed. By the empirical likelihood ratio functions, we also obtain the maximum empirical likelihood estimators of the parameter in nonlinear function and nonparametric function, and prove the asymptotic normality. A simulation study indicates that, compared with normal approximation-based method and the bootstrap method, the empirical likelihood method performs better in terms of coverage probabilities and average length/widths of confidence intervals/bands. An application to a real dataset is illustrated. 相似文献
2.
This article investigates the testing for serial correlation in partially linear models with validation data and applies the empirical likelihood methods to construct serial tests statistics, and then we derive the asymptotic distribution of the test statistics under null hypothesis. Simulation results show that our method performs well. 相似文献
3.
In this article, we consider how to construct the confidence regions of the unknown parameters for partially linear single-index models with endogenous covariates. To eliminate the influence of the endogenous covariates, an empirical likelihood method is proposed based on instrumental variables. Under some regularly conditions, the asymptotic distribution of the proposed empirical log-likelihood ratio is proved to be a Chi-squared distribution. We investigate the finite-sample performance of the proposed method via simulation studies. 相似文献
4.
In this article, we consider statistical inference for longitudinal partial linear models when the response variable is sometimes missing with missingness probability depending on the covariate that is measured with error. A generalized empirical likelihood (GEL) method is proposed by combining correction attenuation and quadratic inference functions. The method that takes into consideration the correlation within groups is used to estimate the regression coefficients. Furthermore, residual-adjusted empirical likelihood (EL) is employed for estimating the baseline function so that undersmoothing is avoided. The empirical log-likelihood ratios are proven to be asymptotically Chi-squared, and the corresponding confidence regions for the parameters of interest are then constructed. Compared with methods based on NAs, the GEL does not require consistent estimators for the asymptotic variance and bias. The numerical study is conducted to compare the performance of the EL and the normal approximation-based method, and a real example is analysed. 相似文献
5.
The paper uses the empirical likelihood method to study the construction of confidence intervals and regions for regression coefficients and response mean in generalized linear models with missing response. By using the inverse selection probability weighted imputation technique, the proposed empirical likelihood ratios are asymptotically chi-squared. Our approach is to directly calibrate the empirical likelihood ratio, which is called as a bias-correction method. Also, a class of estimators for the parameters of interest is constructed, and the asymptotic distributions of the proposed estimators are obtained. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths/areas of confidence intervals/regions. An example of a real data set is used for illustrating our methods. 相似文献
6.
This article is concerned with partially non linear models when the response variables are missing at random. We examine the empirical likelihood (EL) ratio statistics for unknown parameter in non linear function based on complete-case data, semiparametric regression imputation, and bias-corrected imputation. All the proposed statistics are proven to be asymptotically chi-square distribution under some suitable conditions. Simulation experiments are conducted to compare the finite sample behaviors of the proposed approaches in terms of confidence intervals. It showed that the EL method has advantage compared to the conventional method, and moreover, the imputation technique performs better than the complete-case data. 相似文献
7.
In this paper, we introduce the empirical likelihood (EL) method to longitudinal studies. By considering the dependence within subjects in the auxiliary random vectors, we propose a new weighted empirical likelihood (WEL) inference for generalized linear models with longitudinal data. We show that the weighted empirical likelihood ratio always follows an asymptotically standard chi-squared distribution no matter which working weight matrix that we have chosen, but a well chosen working weight matrix can improve the efficiency of statistical inference. Simulations are conducted to demonstrate the accuracy and efficiency of our proposed WEL method, and a real data set is used to illustrate the proposed method. 相似文献
8.
In this paper, we consider the empirical likelihood inferences of the partial functional linear model with missing responses. Two empirical log-likelihood ratios of the parameters of interest are constructed, and the corresponding maximum empirical likelihood estimators of parameters are derived. Under some regularity conditions, we show that the proposed two empirical log-likelihood ratios are asymptotic standard Chi-squared. Thus, the asymptotic results can be used to construct the confidence intervals/regions for the parameters of interest. We also establish the asymptotic distribution theory of corresponding maximum empirical likelihood estimators. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals. An example of real data is also used to illustrate our proposed methods. 相似文献
9.
In this paper, we focus on the empirical likelihood (EL) inference for high-dimensional partially linear model with martingale difference errors. An empirical log-likelihood ratio statistic of unknown parameter is constructed and is shown to have asymptotically normality distribution under some suitable conditions. This result is different from those derived before. Furthermore, an empirical log-likelihood ratio for a linear combination of unknown parameter is also proposed and its asymptotic distribution is chi-squared. Based on these results, the confidence regions both for unknown parameter and a linear combination of parameter can be obtained. A simulation study is carried out to show that our proposed approach performs better than normal approximation-based method. 相似文献
10.
A standard assumption in regression analysis is homogeneity of the error variance. Violation of this assumption can have adverse consequences for the efficiency of estimators. In this paper, we propose an empirical likelihood based diagnostic technique for heteroscedasticity in the partially linear errors-in-variables models. Under mild conditions, a nonparametric version of Wilk's theorem is derived. Simulation results reveal that our test performs well in both size and power. 相似文献
11.
《Journal of the Korean Statistical Society》2014,43(1):91-103
Empirical likelihood inferences for the parameter component in an additive partially linear errors-in-variables model with longitudinal data are investigated in this article. A corrected-attenuation block empirical likelihood procedure is used to estimate the regression coefficients, a corrected-attenuation block empirical log-likelihood ratio statistic is suggested and its asymptotic distribution is obtained. Compared with the method based on normal approximations, our proposed method does not require any consistent estimator for the asymptotic variance and bias. Simulation studies indicate that our proposed method performs better than the method based on normal approximations in terms of relatively higher coverage probabilities and smaller confidence regions. Furthermore, an example of an air pollution and health data set is used to illustrate the performance of the proposed method. 相似文献
12.
ABSTRACTWe investigated the empirical likelihood inference approach under a general class of semiparametric hazards regression models with survival data subject to right-censoring. An empirical likelihood ratio for the full 2p regression parameters involved in the model is obtained. We showed that it converged weakly to a random variable which could be written as a weighted sum of 2p independent chi-squared variables with one degree of freedom. Using this, we could construct a confidence region for parameters. We also suggested an adjusted version for the preceding statistic, whose limit followed a standard chi-squared distribution with 2p degrees of freedom. 相似文献
13.
AbstractThe purpose of this paper is twofold. First, we investigate estimations in varying-coefficient partially linear errors-in-variables models with covariates missing at random. However, the estimators are often biased due to the existence of measurement errors, the bias-corrected profile least-squares estimator and local liner estimators for unknown parametric and coefficient functions are obtained based on inverse probability weighted method. The asymptotic properties of the proposed estimators both for the parameter and nonparametric parts are established. Second, we study asymptotic distributions of an empirical log-likelihood ratio statistic and maximum empirical likelihood estimator for the unknown parameter. Based on this, more accurate confidence regions of the unknown parameter can be constructed. The methods are examined through simulation studies and illustrated by a real data analysis. 相似文献
14.
15.
ABSTRACTThis paper proposes an empirical likelihood (EL) method for estimating the GARCH(p, q) models with heavy-tailed errors. Using the kernel smoothing method, we derive a smoothed EL ratio statistic, which yields a smoothed EL estimator. Moreover, we derive a profile EL for the partial parameters in the presence of nuisance parameters. Simulations and empirical results are conducted to illustrate our proposed method. 相似文献
16.
In this article, empirical likelihood inferences for the varying coefficient partially nonlinear models are investigated. An empirical log-likelihood ratio function for the unknown parameter vector in the nonlinear function part and a residual-adjusted empirical log-likelihood ratio function for the nonparametric component are proposed. The corresponding Wilks phenomena are proved and the confidence regions for parametric component and nonparametric component are constructed. Simulation studies indicate that, in terms of coverage probabilities and average areas of the confidence regions, the empirical likelihood method performs better than the normal approximation-based method. Furthermore, a real data set application is also provided to illustrate the proposed empirical likelihood estimation technique. 相似文献
17.
Empirical Likelihood for First-order Autoregressive Error-in-variable of Models With Validation Data
Shi-hang Yu 《统计学通讯:理论与方法》2014,43(8):1800-1823
In this article, we consider the empirical likelihood for the autoregressive error-in-explanatory variable models. With the help of validation, we first develop an empirical likelihood ratio test statistic for the parameters of interest, and prove that its asymptotic distribution is that of a weighted sum of independent standard χ21 random variables with unknown weights. Also, we propose an adjusted empirical likelihood and prove that its asymptotic distribution is a standard χ2. Furthermore, an empirical likelihood-based confidence region is given. Simulation results indicate that the proposed method works well for practical situations. 相似文献
18.
Zhensheng Huang 《Journal of applied statistics》2011,38(6):1265-1275
Generalized partially linear varying-coefficient models (GPLVCM) are frequently used in statistical modeling. However, the statistical inference of the GPLVCM, such as confidence region/interval construction, has not been very well developed. In this article, empirical likelihood-based inference for the parametric components in the GPLVCM is investigated. Based on the local linear estimators of the GPLVCM, an estimated empirical likelihood-based statistic is proposed. We show that the resulting statistic is asymptotically non-standard chi-squared. By the proposed empirical likelihood method, the confidence regions for the parametric components are constructed. In addition, when some components of the parameter are of particular interest, the construction of their confidence intervals is also considered. A simulation study is undertaken to compare the empirical likelihood and the other existing methods in terms of coverage accuracies and average lengths. The proposed method is applied to a real example. 相似文献
19.
Xia Chen 《统计学通讯:理论与方法》2013,42(15):2498-2514
In this article, we consider the application of the empirical likelihood method to a partially linear single-index model. We focus on the case where some covariates are measured with additive errors. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the proposed confidence region has coverage probability which is closer to the nominal level, as well as narrower than those of normal approximation method. A real data example is given. 相似文献
20.
In this paper, we propose an empirical likelihood based diagnostic technique for heteroscedasticity in the semiparametric varying-coefficient partially linear errors-in-variables models. Under mild conditions, a nonparametric version of Wilk’s theorem is derived. Simulation results reveal that our test performs well in both size and power. 相似文献