首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many methods are available for computing a confidence interval for the binomial parameter, and these methods differ in their operating characteristics. It has been suggested in the literature that the use of the exact likelihood ratio (LR) confidence interval for the binomial proportion should be considered. This paper provides an evaluation of the operating characteristics of the two‐sided exact LR and exact score confidence intervals for the binomial proportion and compares these results to those for three other methods that also strictly maintain nominal coverage: Clopper‐Pearson, Blaker, and Casella. In addition, the operating characteristics of the two‐sided exact LR method and exact score method are compared with those of the corresponding asymptotic methods to investigate the adequacy of the asymptotic approximation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Clinical trials often use paired binomial data as their clinical endpoint. The confidence interval is frequently used to estimate the treatment performance. Tang et al. (2009) have proposed exact and approximate unconditional methods for constructing a confidence interval in the presence of incomplete paired binary data. The approach proposed by Tang et al. can be overly conservative with large expected confidence interval width (ECIW) in some situations. We propose a profile likelihood‐based method with a Jeffreys' prior correction to construct the confidence interval. This approach generates confidence interval with a much better coverage probability and shorter ECIWs. The performances of the method along with the corrections are demonstrated through extensive simulation. Finally, three real world data sets are analyzed by all the methods. Statistical Analysis System (SAS) codes to execute the profile likelihood‐based methods are also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In 1986, Williams showed how, assuming a logistic dose-response curve, one can construct a confidence interval for the median effective dose from the asymptotic likelihood ratio test. He gave reasons for preferring this likelihood ratio interval to the established interval calculated by applying Fieller's theorem to the maximum-likelihood estimates. Here, we assess the impact of applying a Bartlett adjustment to the likelihood ratio statistic and introduce the score test as an alternative approach for constructing a confidence interval for the median effective dose.  相似文献   

4.
Group testing has been used in many fields of study to estimate proportions. When groups are of different size, the derivation of exact confidence intervals is complicated by the lack of a unique ordering of the event space. An exact interval estimation method is described here, in which outcomes are ordered according to a likelihood ratio statistic. The method is compared with another exact method, in which outcomes are ordered by their associated MLE. Plots of the P‐value against the proportion are useful in examining the properties of the methods. Coverage provided by the intervals is assessed using several realistic grouptesting procedures. The method based on the likelihood ratio, with a mid‐P correction, is shown to give very good coverage in terms of closeness to the nominal level, and is recommended for this type of problem.  相似文献   

5.
Let X and Y follow independent Burr type XII distributions, which share a common inner shape parameter. The maximum likelihood estimator of the parameter δ = P(X < Y) is studied based on record samples. The existence and uniqueness of the maximum likelihood estimator of δ based on record samples are established. When the inner shape parameter is known, an exact confidence interval of δ is derived; otherwise, the Fisher information matrix and two bootstrap methods are used to obtain three approximate confidence intervals of δ. The performances of the proposed methods are evaluated via Monte Carlo simulation. Two examples are provided for illustration.  相似文献   

6.
This article deals with the estimation of the stress-strength parameter R = P(Y < X) when X and Y are independent Lindley random variables with different shape parameters. The uniformly minimum variance unbiased estimator has explicit expression, however, its exact or asymptotic distribution is very difficult to obtain. The maximum likelihood estimator of the unknown parameter can also be obtained in explicit form. We obtain the asymptotic distribution of the maximum likelihood estimator and it can be used to construct confidence interval of R. Different parametric bootstrap confidence intervals are also proposed. Bayes estimator and the associated credible interval based on independent gamma priors on the unknown parameters are obtained using Monte Carlo methods. Different methods are compared using simulations and one data analysis has been performed for illustrative purposes.  相似文献   

7.
Based on progressively Type-II censored samples, this article deals with inference for the stress-strength reliability R = P(Y < X) when X and Y are two independent two-parameter bathtub-shape lifetime distributions with different scale parameters, but having the same shape parameter. Different methods for estimating the reliability are applied. The maximum likelihood estimate of R is derived. Also, its asymptotic distribution is used to construct an asymptotic confidence interval for R. Assuming that the shape parameter is known, the maximum likelihood estimator of R is obtained. Based on the exact distribution of the maximum likelihood estimator of R an exact confidence interval of that has been obtained. The uniformly minimum variance unbiased estimator are calculated for R. Bayes estimate of R and the associated credible interval are also got under the assumption of independent gamma priors. Monte Carlo simulations are performed to compare the performances of the proposed estimators. One data analysis has been performed for illustrative purpose. Finally, we will generalize this distribution to the proportional hazard family with two parameters and derive various estimators in this family.  相似文献   

8.
Epstein (1954) introduced the Type-I hybrid censoring scheme as a mixture of Type-I and Type-II censoring schemes. Childs et al. (2003) introduced the Type-II hybrid censoring scheme as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of the maximum likelihood estimator of the mean of a one-parameter exponential distribution based on Type-II hybrid censored samples. The associated confidence interval also has been provided. The main aim of this paper is to consider a two-parameter exponential distribution, and to derive the exact distribution of the maximum likelihood estimators of the unknown parameters based on Type-II hybrid censored samples. The marginal distributions and the exact confidence intervals are also provided. The results can be used to derive the exact distribution of the maximum likelihood estimator of the percentile point, and to construct the associated confidence interval. Different methods are compared using extensive simulations and one data analysis has been performed for illustrative purposes.  相似文献   

9.
In this article, we point out some interesting relations between the exact test and the score test for a binomial proportion p. Based on the properties of the tests, we propose some approximate as well as exact methods of computing sample sizes required for the tests to attain a specified power. Sample sizes required for the tests are tabulated for various values of p to attain a power of 0.80 at level 0.05. We also propose approximate and exact methods of computing sample sizes needed to construct confidence intervals with a given precision. Using the proposed exact methods, sample sizes required to construct 95% confidence intervals with various precisions are tabulated for p = .05(.05).5. The approximate methods for computing sample sizes for score confidence intervals are very satisfactory and the results coincide with those of the exact methods for many cases.  相似文献   

10.
For interval estimation of a proportion, coverage probabilities tend to be too large for “exact” confidence intervals based on inverting the binomial test and too small for the interval based on inverting the Wald large-sample normal test (i.e., sample proportion ± z-score × estimated standard error). Wilson's suggestion of inverting the related score test with null rather than estimated standard error yields coverage probabilities close to nominal confidence levels, even for very small sample sizes. The 95% score interval has similar behavior as the adjusted Wald interval obtained after adding two “successes” and two “failures” to the sample. In elementary courses, with the score and adjusted Wald methods it is unnecessary to provide students with awkward sample size guidelines.  相似文献   

11.
ABSTRACT

In this paper, the stress-strength reliability, R, is estimated in type II censored samples from Pareto distributions. The classical inference includes obtaining the maximum likelihood estimator, an exact confidence interval, and the confidence intervals based on Wald and signed log-likelihood ratio statistics. Bayesian inference includes obtaining Bayes estimator, equi-tailed credible interval, and highest posterior density (HPD) interval given both informative and non-informative prior distributions. Bayes estimator of R is obtained using four methods: Lindley's approximation, Tierney-Kadane method, Monte Carlo integration, and MCMC. Also, we compare the proposed methods by simulation study and provide a real example to illustrate them.  相似文献   

12.
Comparison of accuracy between two diagnostic tests can be implemented by investigating the difference in paired Youden indices. However, few literature articles have discussed the inferences for the difference in paired Youden indices. In this paper, we propose an exact confidence interval for the difference in paired Youden indices based on the generalized pivotal quantities. For comparison, the maximum likelihood estimate‐based interval and a bootstrap‐based interval are also included in the study for the difference in paired Youden indices. Abundant simulation studies are conducted to compare the relative performance of these intervals by evaluating the coverage probability and average interval length. Our simulation results demonstrate that the exact confidence interval outperforms the other two intervals even with small sample size when the underlying distributions are normal. A real application is also used to illustrate the proposed intervals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Finney (1978) has proposed using a composite response to estimate the relative potency of a test treatment with respect to a standard treatment, in the case of a multivariate parallel line bioassay. However, he assumes the coefficients in the composite response to be constants though they are estimated from the data itself. We provide two different methods of obtaining confidence intervals for this relative potency by using the exact variance. A method based on the use of delta technique is also proposed.  相似文献   

14.
In this paper, a new life test plan called a progressively first-failure-censoring scheme introduced by Wu and Ku? [On estimation based on progressive first-failure-censored sampling, Comput. Statist. Data Anal. 53(10) (2009), pp. 3659–3670] is considered. Based on this type of censoring, the maximum likelihood (ML) and Bayes estimates for some survival time parameters namely reliability and hazard functions, as well as the parameters of the Burr-XII distribution are obtained. The Bayes estimators relative to both the symmetric and asymmetric loss functions are discussed. We use the conjugate prior for the one-shape parameter and discrete prior for the other parameter. Exact and approximate confidence intervals with the exact confidence region for the two-shape parameters are derived. A numerical example using the real data set is provided to illustrate the proposed estimation methods developed here. The ML and the different Bayes estimates are compared via a Monte Carlo simulation study.  相似文献   

15.
Based on record values, point and interval estimators are proposed in this paper for the parameters of a general lower-truncated family of distributions. Maximum likelihood and bias-corrected estimators are obtained for unknown model parameters. Based on a sufficient and complete statistic, the bias-corrected estimator is also shown to be uniformly minimum variance unbiased estimator. Different exact confidence intervals and exact confidence regions are constructed for the both model and truncated parameters, and other confidence interval estimates based on asymptotic distribution theory and bootstrap approaches are obtained as well. Finally, two real-life examples and a numerical study are presented to illustrate the performance of our methods.  相似文献   

16.
Inverse sampling is an appropriate design for the second phase of capture-recapture experiments which provides an exactly unbiased estimator of the population size. However, the sampling distribution of the resulting estimator tends to be highly right skewed for small recapture samples, so, the traditional Wald-type confidence intervals appear to be inappropriate. The objective of this paper is to study the performance of interval estimators for the population size under inverse recapture sampling without replacement. To this aim, we consider the Wald-type, the logarithmic transformation-based, the Wilson score, the likelihood ratio and the exact methods. Also, we propose some bootstrap confidence intervals for the population size, including the with-replacement bootstrap (BWR), the without replacement bootstrap (BWO), and the Rao–Wu’s rescaling method. A Monte Carlo simulation is employed to evaluate the performance of suggested methods in terms of the coverage probability, error rates and standardized average length. Our results show that the likelihood ratio and exact confidence intervals are preferred to other competitors, having the coverage probabilities close to the desired nominal level for any sample size, with more balanced error rate for exact method and shorter length for likelihood ratio method. It is notable that the BWO and Rao–Wu’s rescaling methods also may provide good intervals for some situations, however, those coverage probabilities are not invariant with respect to the population arguments, so one must be careful to use them.  相似文献   

17.
Confidence intervals for a single parameter are spanned by quantiles of a confidence distribution, and one‐sided p‐values are cumulative confidences. Confidence distributions are thus a unifying format for representing frequentist inference for a single parameter. The confidence distribution, which depends on data, is exact (unbiased) when its cumulative distribution function evaluated at the true parameter is uniformly distributed over the unit interval. A new version of the Neyman–Pearson lemma is given, showing that the confidence distribution based on the natural statistic in exponential models with continuous data is less dispersed than all other confidence distributions, regardless of how dispersion is measured. Approximations are necessary for discrete data, and also in many models with nuisance parameters. Approximate pivots might then be useful. A pivot based on a scalar statistic determines a likelihood in the parameter of interest along with a confidence distribution. This proper likelihood is reduced of all nuisance parameters, and is appropriate for meta‐analysis and updating of information. The reduced likelihood is generally different from the confidence density. Confidence distributions and reduced likelihoods are rooted in Fisher–Neyman statistics. This frequentist methodology has many of the Bayesian attractions, and the two approaches are briefly compared. Concepts, methods and techniques of this brand of Fisher–Neyman statistics are presented. Asymptotics and bootstrapping are used to find pivots and their distributions, and hence reduced likelihoods and confidence distributions. A simple form of inverting bootstrap distributions to approximate pivots of the abc type is proposed. Our material is illustrated in a number of examples and in an application to multiple capture data for bowhead whales.  相似文献   

18.
We develop an approach to evaluating frequentist model averaging procedures by considering them in a simple situation in which there are two‐nested linear regression models over which we average. We introduce a general class of model averaged confidence intervals, obtain exact expressions for the coverage and the scaled expected length of the intervals, and use these to compute these quantities for the model averaged profile likelihood (MPI) and model‐averaged tail area confidence intervals proposed by D. Fletcher and D. Turek. We show that the MPI confidence intervals can perform more poorly than the standard confidence interval used after model selection but ignoring the model selection process. The model‐averaged tail area confidence intervals perform better than the MPI and postmodel‐selection confidence intervals but, for the examples that we consider, offer little over simply using the standard confidence interval for θ under the full model, with the same nominal coverage.  相似文献   

19.
This article studies the estimation of the reliability R = P[Y < X] when X and Y come from two independent generalized logistic distributions of Type-II with different parameters, based on progressively Type-II censored samples. When the common scale parameter is unknown, the maximum likelihood estimator and its asymptotic distribution are proposed. The asymptotic distribution is used to construct an asymptotic confidence interval of R. Bayes estimator of R and the corresponding credible interval using the Gibbs sampling technique have been proposed too. Assuming that the common scale parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator, Bayes estimation, and confidence interval of R are extracted. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of a real dataset is given for illustrative purposes. Finally, methods are extended for proportional hazard rate models.  相似文献   

20.
For left-truncated and right-censored data, the technique proposed by Brookmeyer and Crowley (1982) is extended to construct a point-wise confidence interval for median residual lifetime. This procedure is computationally simpler than the score type confidence interval in Jeong et al. (2008) and empirical likelihood ratio confidence interval in Zhou and Jeong (2011). Further, transformations of the estimator are applied to improve the approximation to the asymptotic distribution for small sample sizes. A simulation study is conducted to investigate the accuracy of these confidence intervals and the implementation of these confidence intervals to two real datasets is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号